Skip to main content
Glama

analyze_webpage_screenshot

Extract content, layout, and interactive elements from webpage screenshots to analyze structure and accessibility.

Instructions

Specialized tool for analyzing webpage screenshots. Extracts content, layout information, and interactive elements from web pages.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
typeYesThe type of image input
dataYesThe webpage screenshot data (base64 string, file path, or URL)
mimeTypeNoMIME type of the image (required for base64 input)
focusAreaNoSpecific area to focus on (optional)
includeAccessibilityNoInclude accessibility analysis (default: true)
formatNoOutput format (default: json for structured webpage analysis)
maxTokensNoMaximum tokens in response (default: 4000)

Implementation Reference

  • The handler function that processes the input arguments, handles image processing, constructs specialized prompts for webpage screenshot analysis (including focus areas like layout, content, accessibility), calls the OpenRouter vision model API, and returns the analysis result.
    export async function handleAnalyzeWebpage( args: any, config: Config, openRouterClient: OpenRouterClient, logger: Logger ) { const imageProcessor = ImageProcessor.getInstance(); try { const imageInput = { type: args.type as 'base64' | 'file' | 'url', data: args.data as string, mimeType: args.mimeType as string, }; const focusArea = args.focusArea as string; const includeAccessibility = args.includeAccessibility !== false; const format = args.format as 'text' | 'json' || 'json'; const maxTokens = args.maxTokens as number || 4000; logger.info(`Starting webpage screenshot analysis for type: ${imageInput.type}, focus: ${focusArea}`); // Process the image const processedImage = await imageProcessor.processImage(imageInput); // Validate image type if (!imageProcessor.isValidImageType(processedImage.mimeType)) { throw new Error(`Unsupported image type: ${processedImage.mimeType}`); } // Check file size const serverConfig = config.getServerConfig(); const maxImageSize = serverConfig.maxImageSize || 10485760; if (processedImage.size > maxImageSize) { throw new Error(`Image size ${processedImage.size} exceeds maximum allowed size ${maxImageSize}`); } // Build specialized prompt for webpage analysis let prompt = 'Analyze this webpage screenshot and provide detailed information about its structure, content, and design.'; if (focusArea) { switch (focusArea) { case 'layout': prompt += ' Focus specifically on the layout structure, grid system, spacing, and visual hierarchy.'; break; case 'content': prompt += ' Focus specifically on the content, headings, body text, and information architecture.'; break; case 'navigation': prompt += ' Focus specifically on navigation elements, menus, breadcrumbs, and user pathways.'; break; case 'forms': prompt += ' Focus specifically on form elements, input fields, buttons, and validation indicators.'; break; case 'interactive': prompt += ' Focus specifically on interactive elements like buttons, links, hover states, and calls-to-action.'; break; case 'accessibility': prompt += ' Focus specifically on accessibility features, contrast ratios, alt text indicators, and keyboard navigation.'; break; } } prompt += ' Include specific details about:'; if (includeAccessibility || focusArea === 'accessibility') { prompt += ' accessibility considerations, color contrast, font sizes, and assistive technology compatibility;'; } prompt += ' responsive design indicators, viewport information, and mobile optimization; visual design elements like colors, typography, and branding; user experience considerations and potential usability issues; any errors, warnings, or unusual states visible.'; if (format === 'json') { prompt += ' Provide your analysis in a structured JSON format with the following schema: {"page_title": "string", "url": "string (if visible)", "layout": {"header": "description", "navigation": "description", "main_content": "description", "sidebar": "description", "footer": "description"}, "content": {"headings": ["list"], "body_text": "summary", "key_elements": ["list"]}, "interactive_elements": {"buttons": ["list"], "links": ["list"], "forms": ["list"]}, "design": {"color_scheme": "description", "typography": "description", "branding": "description"}, "accessibility": {"score": "1-10", "issues": ["list"], "positive_aspects": ["list"]}, "usability": {"strengths": ["list"], "issues": ["list"], "recommendations": ["list"]}, "technical_notes": "technical observations"}'; } // Analyze the webpage screenshot const result = await openRouterClient.analyzeImage( processedImage.data, processedImage.mimeType, prompt, { format, maxTokens } ); if (!result.success) { throw new Error(result.error || 'Failed to analyze webpage screenshot'); } logger.info(`Webpage screenshot analysis completed successfully`, { model: result.model, usage: result.usage, }); return { content: [ { type: 'text', text: result.analysis || 'No analysis available', }, ], }; } catch (error) { logger.error('Webpage screenshot analysis failed', error); return { content: [ { type: 'text', text: `Error: ${(error as Error).message}`, }, ], isError: true, }; } }
  • Input schema definition for the analyze_webpage_screenshot tool, specifying parameters like image type, data, focus areas, format, etc.
    inputSchema: { type: 'object', properties: { type: { type: 'string', enum: ['base64', 'file', 'url'], description: 'The type of image input', }, data: { type: 'string', description: 'The webpage screenshot data (base64 string, file path, or URL)', }, mimeType: { type: 'string', description: 'MIME type of the image (required for base64 input)', }, focusArea: { type: 'string', enum: ['layout', 'content', 'navigation', 'forms', 'interactive', 'accessibility'], description: 'Specific area to focus on (optional)', }, includeAccessibility: { type: 'boolean', description: 'Include accessibility analysis (default: true)', }, format: { type: 'string', enum: ['text', 'json'], description: 'Output format (default: json for structured webpage analysis)', }, maxTokens: { type: 'number', description: 'Maximum tokens in response (default: 4000)', }, }, required: ['type', 'data'], },
  • src/index.ts:90-130 (registration)
    Tool registration in the listTools handler, defining name, description, and input schema.
    { name: 'analyze_webpage_screenshot', description: 'Specialized tool for analyzing webpage screenshots. Extracts content, layout information, and interactive elements from web pages.', inputSchema: { type: 'object', properties: { type: { type: 'string', enum: ['base64', 'file', 'url'], description: 'The type of image input', }, data: { type: 'string', description: 'The webpage screenshot data (base64 string, file path, or URL)', }, mimeType: { type: 'string', description: 'MIME type of the image (required for base64 input)', }, focusArea: { type: 'string', enum: ['layout', 'content', 'navigation', 'forms', 'interactive', 'accessibility'], description: 'Specific area to focus on (optional)', }, includeAccessibility: { type: 'boolean', description: 'Include accessibility analysis (default: true)', }, format: { type: 'string', enum: ['text', 'json'], description: 'Output format (default: json for structured webpage analysis)', }, maxTokens: { type: 'number', description: 'Maximum tokens in response (default: 4000)', }, }, required: ['type', 'data'], }, },
  • src/index.ts:194-195 (registration)
    Dispatch/registration of the handler in the centralized CallToolRequestSchema switch statement.
    case 'analyze_webpage_screenshot': return await handleAnalyzeWebpage(args, config, openRouterClient, logger);
  • src/index.ts:13-13 (registration)
    Import of the handler function.
    import { handleAnalyzeWebpage } from './tools/analyze-webpage.js';

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/JonathanJude/openrouter-image-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server