Python MCP Sandbox

Integrations

  • Runs Python code in isolated Docker containers for secure execution, enabling safe installation of packages and execution of arbitrary Python code

  • Supports installation and usage of NumPy library in the Python environment as mentioned in the example workflow

  • Supports installation and usage of pandas library for data analysis as mentioned in the example workflow

MCP 沙盒

欢迎在mcp 沙盒上尝试

中文文档| English

演示

Python MCP Sandbox 是一个交互式 Python 代码执行工具,允许用户和 LLM 安全地执行 Python 代码并在隔离的 Docker 容器中安装程序包。

特征

  • 🐳 Docker 隔离:在隔离的 Docker 容器中安全地运行 Python 代码
  • 📦软件包管理:轻松安装和管理 Python 软件包
  • 📊文件生成:支持生成文件并通过网络链接访问

安装

# Clone the repository git clone https://github.com/JohanLi233/python-mcp-sandbox.git cd python-mcp-sandbox uv venv uv sync # Start the server uv run main.py

默认的 SSE 端点是http://localhost:8000/sse ,您可以通过 SSE 或任何其他支持 SSE 连接的客户端通过 MCP Inspector 与其进行交互。

可用工具

  1. create_sandbox :创建一个新的 Python Docker 沙盒并返回其 ID,用于后续代码执行和包安装
  2. list_sandboxes :列出所有现有沙盒(Docker 容器)以供重复使用
  3. execute_python_code :在指定的 Docker 沙箱中执行 Python 代码
  4. install_package_in_sandbox :在指定的 Docker 沙箱中安装 Python 包
  5. check_package_installation_status :检查 Docker 沙箱中软件包是否已安装或安装状态
  6. execute_terminal_command :在指定的 Docker 沙盒中执行终端命令。参数: sandbox_id (字符串), command (字符串)。返回stdoutstderrexit_code
  7. upload_file_to_sandbox :将本地文件上传到指定的 Docker 沙盒。参数: sandbox_id (字符串)、 local_file_path (字符串)、 dest_path (字符串,可选,默认值: /app/results )。

项目结构

python-mcp-sandbox/ ├── main.py # Application entry point ├── requirements.txt # Project dependencies ├── Dockerfile # Docker configuration for Python containers ├── results/ # Directory for generated files ├── mcp_sandbox/ # Main package directory │ ├── __init__.py │ ├── models.py # Pydantic models │ ├── api/ # API related components │ │ ├── __init__.py │ │ └── routes.py # API route definitions │ ├── core/ # Core functionality │ │ ├── __init__.py │ │ ├── docker_manager.py # Docker container management │ │ └── mcp_tools.py # MCP tools │ └── utils/ # Utilities │ ├── __init__.py │ ├── config.py # Configuration constants │ ├── file_manager.py # File management │ └── task_manager.py # Periodic task management └── README.md # Project documentation

示例提示

I've configured a Python code execution sandbox for you. You can run Python code using the following steps: 1. First, use the "list_sandboxes" tool to view all existing sandboxes (Docker containers). - You can reuse an existing sandbox_id if a sandbox exists, do not create a new one. - If you need a new sandbox, use the "create_sandbox" tool. - Each sandbox is an isolated Python environment, and the sandbox_id is required for all subsequent operations. 2. If you need to install packages, use the "install_package_in_sandbox" tool - Parameters: sandbox_id and package_name (e.g., numpy, pandas) - This starts asynchronous installation and returns immediately with status 3. After installing packages, you can check their installation status using the "check_package_installation_status" tool - Parameters: sandbox_id and package_name (name of the package to check) - If the package is still installing, you need to check again using this tool 4. Use the "execute_python_code" tool to run your code - Parameters: sandbox_id and code (Python code) - Returns output, errors and links to any generated files - All generated files are stored inside the sandbox, and file_links are direct HTTP links for inline viewing Example workflow: - Use list_sandboxes to check for available sandboxes, if no available sandboxes, use create_sandbox to create a new one → Get sandbox_id - Use install_package_in_sandbox to install necessary packages (like pandas, matplotlib), with the sandbox_id parameter - Use check_package_installation_status to verify package installation, with the same sandbox_id parameter - Use execute_python_code to run your code, with the sandbox_id parameter Code execution happens in a secure sandbox. Generated files (images, CSVs, etc.) will be provided as direct HTTP links, which can viewed inline in the browser. Remember not to use plt.show() in your Python code. For visualizations: - Save figures to files using plt.savefig() instead of plt.show() - For data, use methods like df.to_csv() or df.to_excel() to save as files - All saved files will automatically appear as HTTP links in the results, which you can open or embed directly.

MCP 示例配置

以下是 claude 的示例配置:

{ "mcpServers": { "mcpSandbox": { "command": "npx", "args": ["-y", "supergateway", "--sse", "http://localhost:8000/sse"] } } }

MCP 在线演示示例配置

{ "mcpServers": { "mcpSandbox": { "command": "npx", "args": ["-y", "supergateway", "--sse", "http://115.190.87.78/sse?api_key=<API_KEY>"] } } }

根据您的环境需要修改serverUrl

-
security - not tested
A
license - permissive license
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

一个交互式 Python 代码执行环境,允许用户和 LLM 安全地执行 Python 代码并在隔离的 Docker 容器中安装程序包。

  1. Feel free to try on mcp sandbox
    1. Demo
      1. Features
      2. Installation
      3. Project Structure
      4. Example Prompt
      5. MCP Example Config
      6. MCP Example Config for Online Demo

    Related MCP Servers

    • -
      security
      F
      license
      -
      quality
      Provides isolated Docker environments for code execution, enabling users to create and manage containers, execute multi-language code, save and reproduce development environments, ensuring security and isolation.
      Last updated -
      6
      Python
      • Apple
    • A
      security
      A
      license
      A
      quality
      Allows LLMs to execute Python code in a specified Conda environment, enabling access to necessary libraries and dependencies for efficient code execution.
      Last updated -
      1
      29
      JavaScript
      MIT License
    • -
      security
      A
      license
      -
      quality
      Facilitates isolated code execution within Docker containers, enabling secure multi-language script execution and integration with language models like Claude via the Model Context Protocol.
      Last updated -
      Python
      MIT License
      • Linux
      • Apple
    • A
      security
      A
      license
      A
      quality
      A server that provides a persistent Python REPL environment through the MCP protocol, allowing execution of Python code, variable management, and package installation.
      Last updated -
      3
      3
      Python
      MIT License

    View all related MCP servers

    ID: 337zco6046