# P0 Critical Issues - Fix Summary (2026-01-22)
## Overview
This document summarizes the fixes applied to P0 critical backend issues on 2026-01-22, including what was fixed, what remains, and next steps.
---
## ✅ FIXED: `/api/v1/esg/statistics/` - 500 Error
### Problem
Endpoint returned HTTP 500 with `{"error":"Failed to list table statistics"}` for all requests.
### Root Causes Identified
1. **Method name error**: Code called `get_configured_tables()` which doesn't exist; should be `get_all_configured_tables()`
2. **Poor error handling**: When `get_basic_statistics()` failed for any table, entire endpoint returned 500 instead of partial results
3. **Slow queries**: Exact `COUNT(*)` queries on tables with 300M+ records were timing out
### Solutions Implemented
#### 1. Fixed Method Name
**File**: `fr-data-service/src/apps/esg/views.py`
- Changed `self.temporal_manager.get_configured_tables()` → `self.temporal_manager.get_all_configured_tables()`
- Fixed in both `retrieve()` and `list()` methods
#### 2. Improved Error Handling
**File**: `fr-data-service/src/apps/esg/views.py`
- Changed 500 error response to 200 with error information
- Allows partial results when some tables fail
- Returns `{'error': 'Some tables could not be processed', 'error_message': str(e)}` instead of failing completely
#### 3. Added Approximate Counts for Large Tables
**File**: `fr-data-service/src/apps/esg/services.py`
- Modified `get_basic_statistics()` to use PostgreSQL `reltuples` for tables > 10M records
- Falls back to exact count for smaller tables or if approximate fails
- Added error handling to prevent crashes
**Implementation**:
```python
# Use PostgreSQL's reltuples for fast approximate counts
cursor.execute("""
SELECT reltuples::BIGINT as approximate_count
FROM pg_class
WHERE relname = %s
""", [db_table_name])
```
### Verification
- ✅ HTTP Status: 200 (was 500)
- ✅ Returns: 20 tables with statistics
- ✅ Response time: < 1 second
- ✅ Tested: `curl http://localhost:8001/api/v1/esg/statistics/` returns valid JSON
### Impact
- Users can now access table statistics endpoint
- MCP `get_data_summary` tool can query statistics without errors
- Fast response times even for large tables
---
## 🔄 PARTIALLY FIXED: `/api/v1/esg/summary/` - Timeout Issue
### Problem
Endpoint takes >2 minutes to respond, exceeding all reasonable timeout limits (>30s).
### Root Causes Identified
1. **Expensive queries**: `get_all_tables_summary()` calls `get_table_statistics()` for each table, running `COUNT(*)` on 300M+ record tables
2. **Temporal analysis**: Expensive temporal coverage analysis for each table
3. **No caching**: Summary recalculated on every request
4. **No optimization**: No approximate counts or query optimization
### Solutions Implemented
#### 1. Approximate Counts for Large Tables
**File**: `fr-data-service/src/apps/esg/services.py`
- Modified `_get_basic_counts()` to use PostgreSQL `reltuples` for tables > 10M records
- Same implementation as statistics endpoint fix
#### 2. Optimized Summary Method
**File**: `fr-data-service/src/apps/esg/services.py`
- Changed `get_all_tables_summary()` to use `get_basic_statistics()` instead of `get_table_statistics()`
- Skips expensive temporal coverage analysis
- Much faster for summary purposes
**Before**:
```python
table_stats = self.get_table_statistics(
table_name=table_name,
include_temporal=True, # Expensive!
include_distributions=False
)
```
**After**:
```python
basic_stats = self.get_basic_statistics(table_name) # Fast!
```
#### 3. Better Error Handling
- Graceful degradation if some tables fail
- Returns partial results instead of failing completely
### Current Status
- ⚠️ **STILL TIMING OUT**: Endpoint still exceeds 15-second timeout
- Optimizations applied but may need additional work
- Possible remaining bottlenecks:
- `get_basic_statistics()` may still be slow for very large tables
- Approximate count queries may need tuning
- Other operations in summary endpoint may be slow
### Remaining Work
#### High Priority
1. **Investigate bottlenecks** ⏳
- Check application logs to identify what's still slow
- Profile database queries to find slow operations
- Identify if approximate counts are being used correctly
2. **Add timeout protection** ⏳
- Implement request timeout/early return logic
- Return partial results if timeout exceeded
- Add timeout configuration
#### Medium Priority
3. **Implement caching** ⏳
- Cache summary statistics with 1-hour TTL
- Use Django cache framework or Redis
- Invalidate cache on data updates
#### Long-term Optimizations
4. **Pre-compute aggregates** ⏳
- Run background job to compute statistics daily
- Store pre-computed values in database
- Update via scheduled task
5. **Materialized views** ⏳
- Create PostgreSQL materialized views for common aggregations
- Refresh periodically
- Query materialized views instead of raw tables
### Acceptance Criteria (Not Yet Met)
- ⏳ Response time < 5 seconds (current: > 15 seconds)
- ✅ Returns: total records per source, date ranges, geographic coverage, data freshness (when it completes)
---
## Files Modified
### `fr-data-service/src/apps/esg/views.py`
- Fixed method name: `get_configured_tables()` → `get_all_configured_tables()`
- Improved error handling in `TableStatisticsViewSet.list()`
- Changed 500 error to 200 with error info
### `fr-data-service/src/apps/esg/services.py`
- `_get_basic_counts()`: Added approximate count logic using PostgreSQL `reltuples`
- `get_basic_statistics()`: Added approximate count logic
- `get_all_tables_summary()`: Changed to use `get_basic_statistics()` instead of `get_table_statistics()`
---
## Testing Performed
### Statistics Endpoint (`/api/v1/esg/statistics/`)
- ✅ HTTP 200 response (was 500)
- ✅ Returns 20 tables
- ✅ Response time < 1 second
- ✅ No errors in logs
### Summary Endpoint (`/api/v1/esg/summary/`)
- ⚠️ Still timing out after 15 seconds
- ⚠️ Optimizations applied but need further investigation
---
## Next Steps
1. **Immediate**: Investigate summary endpoint bottlenecks
2. **Short-term**: Implement caching for summary endpoint
3. **Medium-term**: Add timeout protection and early return logic
4. **Long-term**: Consider pre-computed aggregates or materialized views
---
## Related Documentation
- [BACKEND_ENDPOINT_INVENTORY.md](BACKEND_ENDPOINT_INVENTORY.md) - Full endpoint inventory and remediation status
- [MCP_TOOL_TEST_RESULTS.md](MCP_TOOL_TEST_RESULTS.md) - MCP tool test results
---
**Last Updated**: 2026-01-22
**Status**: 1 of 2 P0 issues fully fixed, 1 partially fixed