#!/usr/bin/env python3
"""
转录核心模块
包含音频转录的核心逻辑
"""
import os
import time
import logging
from typing import Dict, Any, Tuple, List, Optional, Union
from model_manager import get_whisper_model
from audio_processor import validate_audio_file, process_audio
from formatters import format_vtt, format_srt, format_json, format_time
# 日志配置
logger = logging.getLogger(__name__)
def transcribe_audio(
audio_path: str,
model_name: str = "large-v3",
device: str = "auto",
compute_type: str = "auto",
language: str = None,
output_format: str = "vtt",
beam_size: int = 5,
temperature: float = 0.0,
initial_prompt: str = None,
output_directory: str = None
) -> str:
"""
使用Faster Whisper转录音频文件
Args:
audio_path: 音频文件路径
model_name: 模型名称 (tiny, base, small, medium, large-v1, large-v2, large-v3)
device: 运行设备 (cpu, cuda, auto)
compute_type: 计算类型 (float16, int8, auto)
language: 语言代码 (如zh, en, ja等,默认自动检测)
output_format: 输出格式 (vtt, srt或json)
beam_size: 波束搜索大小,较大的值可能提高准确性但会降低速度
temperature: 采样温度,贪婪解码
initial_prompt: 初始提示文本,可以帮助模型更好地理解上下文
output_directory: 输出目录路径,默认为音频文件所在目录
Returns:
str: 转录结果,格式为VTT字幕或JSON
"""
# 验证音频文件
validation_result = validate_audio_file(audio_path)
if validation_result != "ok":
return validation_result
try:
# 获取模型实例
model_instance = get_whisper_model(model_name, device, compute_type)
# 验证语言代码
supported_languages = {
"zh": "中文", "en": "英语", "ja": "日语", "ko": "韩语", "de": "德语",
"fr": "法语", "es": "西班牙语", "ru": "俄语", "it": "意大利语",
"pt": "葡萄牙语", "nl": "荷兰语", "ar": "阿拉伯语", "hi": "印地语",
"tr": "土耳其语", "vi": "越南语", "th": "泰语", "id": "印尼语"
}
if language is not None and language not in supported_languages:
logger.warning(f"未知的语言代码: {language},将使用自动检测")
language = None
# 设置转录参数
options = {
"language": language,
"vad_filter": True, # 使用语音活动检测
"vad_parameters": {"min_silence_duration_ms": 500}, # VAD参数优化
"beam_size": beam_size,
"temperature": temperature,
"initial_prompt": initial_prompt,
"word_timestamps": True, # 启用单词级时间戳
"suppress_tokens": [-1], # 抑制特殊标记
"condition_on_previous_text": True, # 基于前文进行条件生成
"compression_ratio_threshold": 2.4 # 压缩比阈值,用于过滤重复内容
}
start_time = time.time()
logger.info(f"开始转录文件: {os.path.basename(audio_path)}")
# 处理音频
audio_source = process_audio(audio_path)
# 执行转录 - 优先使用批处理模型
if model_instance['batched_model'] is not None and model_instance['device'] == 'cuda':
logger.info("使用批处理加速进行转录...")
# 批处理模型需要单独设置batch_size参数
segments, info = model_instance['batched_model'].transcribe(
audio_source,
batch_size=model_instance['batch_size'],
**options
)
else:
logger.info("使用标准模型进行转录...")
segments, info = model_instance['model'].transcribe(audio_source, **options)
# 将生成器转换为列表
segment_list = list(segments)
if not segment_list:
return "转录失败,未获得结果"
# 记录转录信息
elapsed_time = time.time() - start_time
logger.info(f"转录完成,用时: {elapsed_time:.2f}秒,检测语言: {info.language},音频长度: {info.duration:.2f}秒")
# 格式化转录结果
if output_format.lower() == "vtt":
transcription_result = format_vtt(segment_list)
elif output_format.lower() == "srt":
transcription_result = format_srt(segment_list)
else:
transcription_result = format_json(segment_list, info)
# 获取音频文件的目录和文件名
audio_dir = os.path.dirname(audio_path)
audio_filename = os.path.splitext(os.path.basename(audio_path))[0]
# 设置输出目录
if output_directory is None:
output_dir = audio_dir
else:
output_dir = output_directory
# 确保输出目录存在
os.makedirs(output_dir, exist_ok=True)
# 生成带有时间戳的文件名
timestamp = time.strftime("%Y%m%d%H%M%S")
output_filename = f"{audio_filename}_{timestamp}.{output_format.lower()}"
output_path = os.path.join(output_dir, output_filename)
# 将转录结果写入文件
try:
with open(output_path, "w", encoding="utf-8") as f:
f.write(transcription_result)
logger.info(f"转录结果已保存到: {output_path}")
return f"转录成功,结果已保存到: {output_path}"
except Exception as e:
logger.error(f"保存转录结果失败: {str(e)}")
return f"转录成功,但保存结果失败: {str(e)}"
except Exception as e:
logger.error(f"转录失败: {str(e)}")
return f"转录过程中发生错误: {str(e)}"
def report_progress(current: int, total: int, elapsed_time: float) -> str:
"""
生成进度报告
Args:
current: 当前处理的项目数
total: 总项目数
elapsed_time: 已用时间(秒)
Returns:
str: 格式化的进度报告
"""
progress = current / total * 100
eta = (elapsed_time / current) * (total - current) if current > 0 else 0
return (f"进度: {current}/{total} ({progress:.1f}%)" +
f" | 已用时间: {format_time(elapsed_time)}" +
f" | 预计剩余: {format_time(eta)}")
def batch_transcribe(
audio_folder: str,
output_folder: str = None,
model_name: str = "large-v3",
device: str = "auto",
compute_type: str = "auto",
language: str = None,
output_format: str = "vtt",
beam_size: int = 5,
temperature: float = 0.0,
initial_prompt: str = None,
parallel_files: int = 1
) -> str:
"""
批量转录文件夹中的音频文件
Args:
audio_folder: 包含音频文件的文件夹路径
output_folder: 输出文件夹路径,默认为audio_folder下的transcript子文件夹
model_name: 模型名称 (tiny, base, small, medium, large-v1, large-v2, large-v3)
device: 运行设备 (cpu, cuda, auto)
compute_type: 计算类型 (float16, int8, auto)
language: 语言代码 (如zh, en, ja等,默认自动检测)
output_format: 输出格式 (vtt, srt或json)
beam_size: 波束搜索大小,较大的值可能提高准确性但会降低速度
temperature: 采样温度,0表示贪婪解码
initial_prompt: 初始提示文本,可以帮助模型更好地理解上下文
parallel_files: 并行处理的文件数量(仅在CPU模式下有效)
Returns:
str: 批处理结果摘要,包含处理时间和成功率
"""
if not os.path.isdir(audio_folder):
return f"错误: 文件夹不存在: {audio_folder}"
# 设置输出文件夹
if output_folder is None:
output_folder = os.path.join(audio_folder, "transcript")
# 确保输出目录存在
os.makedirs(output_folder, exist_ok=True)
# 验证输出格式
valid_formats = ["vtt", "srt", "json"]
if output_format.lower() not in valid_formats:
return f"错误: 不支持的输出格式: {output_format}。支持的格式: {', '.join(valid_formats)}"
# 获取所有音频文件
audio_files = []
supported_formats = [".mp3", ".wav", ".m4a", ".flac", ".ogg", ".aac"]
for filename in os.listdir(audio_folder):
file_ext = os.path.splitext(filename)[1].lower()
if file_ext in supported_formats:
audio_files.append(os.path.join(audio_folder, filename))
if not audio_files:
return f"在 {audio_folder} 中未找到支持的音频文件。支持的格式: {', '.join(supported_formats)}"
# 记录开始时间
start_time = time.time()
total_files = len(audio_files)
logger.info(f"开始批量转录 {total_files} 个文件,输出格式: {output_format}")
# 预加载模型以避免重复加载
try:
get_whisper_model(model_name, device, compute_type)
logger.info(f"已预加载模型: {model_name}")
except Exception as e:
logger.error(f"预加载模型失败: {str(e)}")
return f"批处理失败: 无法加载模型 {model_name}: {str(e)}"
# 处理每个文件
results = []
success_count = 0
error_count = 0
total_audio_duration = 0
# 处理每个文件
for i, audio_path in enumerate(audio_files):
file_name = os.path.basename(audio_path)
elapsed = time.time() - start_time
# 报告进度
progress_msg = report_progress(i, total_files, elapsed)
logger.info(f"{progress_msg} | 当前处理: {file_name}")
# 执行转录
try:
result = transcribe_audio(
audio_path=audio_path,
model_name=model_name,
device=device,
compute_type=compute_type,
language=language,
output_format=output_format,
beam_size=beam_size,
temperature=temperature,
initial_prompt=initial_prompt,
output_directory=output_folder
)
# 检查结果是否包含错误信息
if result.startswith("错误:") or result.startswith("转录过程中发生错误:"):
logger.error(f"转录失败: {file_name} - {result}")
results.append(f"❌ 失败: {file_name} - {result}")
error_count += 1
continue
# 如果转录成功,提取输出路径信息
if result.startswith("转录成功"):
# 从返回消息中提取输出路径
output_path = result.split(": ")[1] if ": " in result else "未知路径"
success_count += 1
results.append(f"✅ 成功: {file_name} -> {os.path.basename(output_path)}")
# 提取音频时长
audio_duration = 0
if output_format.lower() == "json":
# 尝试从输出文件中解析音频时长
try:
import json
# 从输出文件中读取JSON内容
with open(output_path, "r", encoding="utf-8") as json_file:
json_content = json_file.read()
json_data = json.loads(json_content)
audio_duration = json_data.get("duration", 0)
except Exception as e:
logger.warning(f"无法从JSON文件中提取音频时长: {str(e)}")
audio_duration = 0
else:
# 尝试从文件名中提取音频信息
try:
# 这里我们不能直接访问info对象,因为它在transcribe_audio函数的作用域内
# 使用一个保守的估计值或从结果字符串中提取信息
audio_duration = 0 # 默认为0
except Exception as e:
logger.warning(f"无法从文件名中提取音频时长: {str(e)}")
audio_duration = 0
# 累加音频时长
total_audio_duration += audio_duration
except Exception as e:
logger.error(f"转录过程中发生错误: {file_name} - {str(e)}")
results.append(f"❌ 失败: {file_name} - {str(e)}")
error_count += 1
# 计算总转录时间
total_transcription_time = time.time() - start_time
# 生成批处理结果摘要
summary = f"批处理完成,总转录时间: {format_time(total_transcription_time)}"
summary += f" | 成功: {success_count}/{total_files}"
summary += f" | 失败: {error_count}/{total_files}"
# 输出结果
for result in results:
logger.info(result)
return summary