Skip to main content
Glama
IDEA-Research

DINO-X Image Detection MCP Server

object-detection-by-text

Detect and count objects in an image using a text prompt, providing detailed descriptions and 2D coordinates for precise visual analysis.

Instructions

Analyze an image based on a text prompt to identify and count specific objects, and return detailed descriptions of the objects and their 2D coordinates.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
imageFileUriYesURI of the input image. Preferred for remote or local files. Must start with "https://" or "file://".
includeDescriptionYesWhether to return a description of the objects detected in the image, but will take longer to process.
textPromptYesNouns of target objects (English only, avoid adjectives). Use periods to separate multiple categories (e.g., 'person.car.traffic light').

Implementation Reference

  • Tool name definition and metadata (name and description) used for registration and schema
    [Tool.DETECT_BY_TEXT]: { name: Tool.DETECT_BY_TEXT, description: "Analyze an image based on a text prompt to identify and count specific objects, and return detailed descriptions of the objects and their 2D coordinates.",
  • Core handler function in DinoXApiClient that performs object detection by text prompt using the DINO-X API
    async detectObjectsByText( imageFileUri: string, textPrompt: string, includeDescription: boolean ): Promise<DetectionResult> { return this.performDetection(imageFileUri, includeDescription, { model: "DINO-X-1.0", prompt: { type: "text", text: textPrompt }, targets: ["bbox"], bbox_threshold: 0.25, iou_threshold: 0.8 }); }
  • MCP tool registration including schema (Zod), description, and wrapper handler for HTTP server transport
    private registerDetectByTextTool(): void { const { name, description } = ToolConfigs[Tool.DETECT_BY_TEXT]; this.server.tool( name, description, { imageFileUri: z.string().describe("URI of the input image. Preferred for remote or local files. Must start with 'https://.'"), textPrompt: z.string().describe("Nouns of target objects (English only, avoid adjectives). Use periods to separate multiple categories (e.g., 'person.car.traffic light')."), includeDescription: z.boolean().describe("Whether to return a description of the objects detected in the image, but will take longer to process."), }, async (args) => { try { const { imageFileUri, textPrompt, includeDescription } = args; if (!imageFileUri || !textPrompt) { return { content: [ { type: 'text', text: 'Image file URI and text prompt are required', }, ], } } const { objects } = await this.api.detectObjectsByText(imageFileUri, textPrompt, includeDescription); const categories: ResultCategory = {}; for (const object of objects) { if (!categories[object.category]) { categories[object.category] = []; } categories[object.category].push(object); } const objectsInfo = objects.map(obj => { const bbox = parseBbox(obj.bbox); return { name: obj.category, bbox, ...(includeDescription ? { description: obj.caption, } : {}), } }); return { content: [ { type: "text", text: `Objects detected in image: ${Object.keys(categories).map(cat => `${cat} (${categories[cat].length})` )?.join(', ')}.` }, { type: "text", text: `Detailed object detection results: ${JSON.stringify((objectsInfo), null, 2)}` }, { type: "text", text: `Note: The bbox coordinates are in {xmin, ymin, xmax, ymax} format, where the origin (0,0) is at the top-left corner of the image. These coordinates help determine the exact position and spatial relationships of objects in the image.` }, ] }; } catch (error) { return { content: [ { type: 'text', text: `Failed to detect objects from image: ${error instanceof Error ? error.message : String(error)}`, }, ], }; } } ) }
  • MCP tool registration including schema (Zod), description, and wrapper handler for STDIO server transport
    private registerDetectByTextTool(): void { const { name, description } = ToolConfigs[Tool.DETECT_BY_TEXT]; this.server.tool( name, description, { imageFileUri: z.string().describe("URI of the input image. Preferred for remote or local files. Must start with 'https://' or 'file://'."), textPrompt: z.string().describe("Nouns of target objects (English only, avoid adjectives). Use periods to separate multiple categories (e.g., 'person.car.traffic light')."), includeDescription: z.boolean().describe("Whether to return a description of the objects detected in the image, but will take longer to process."), }, async (args) => { try { const { imageFileUri, textPrompt, includeDescription } = args; if (!imageFileUri || !textPrompt) { return { content: [ { type: 'text', text: 'Image file URI and text prompt are required', }, ], } } const { objects } = await this.api.detectObjectsByText(imageFileUri, textPrompt, includeDescription); const categories: ResultCategory = {}; for (const object of objects) { if (!categories[object.category]) { categories[object.category] = []; } categories[object.category].push(object); } const objectsInfo = objects.map(obj => { const bbox = parseBbox(obj.bbox); return { name: obj.category, bbox, ...(includeDescription ? { description: obj.caption, } : {}), } }); return { content: [ { type: "text", text: `Objects detected in image: ${Object.keys(categories).map(cat => `${cat} (${categories[cat].length})` )?.join(', ')}.` }, { type: "text", text: `Detailed object detection results: ${JSON.stringify((objectsInfo), null, 2)}` }, { type: "text", text: `Note: The bbox coordinates are in {xmin, ymin, xmax, ymax} format, where the origin (0,0) is at the top-left corner of the image. These coordinates help determine the exact position and spatial relationships of objects in the image.` }, ] }; } catch (error) { return { content: [ { type: 'text', text: `Failed to detect objects from image: ${error instanceof Error ? error.message : String(error)}`, }, ], }; } } )
  • Utility function to parse and format bounding box coordinates used in tool response formatting
    export const parseBbox = (bbox: number[]) => { return { xmin: parseFloat(bbox[0].toFixed(1)), ymin: parseFloat(bbox[1].toFixed(1)), xmax: parseFloat(bbox[2].toFixed(1)), ymax: parseFloat(bbox[3].toFixed(1)) }; };

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/IDEA-Research/DINO-X-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server