Skip to main content
Glama
IDEA-Research

DINO-X Image Detection MCP Server

detect-objects-by-text

Identify and locate specific objects in images using text prompts. Analyze images to detect, count, and describe objects with 2D coordinates based on user-defined categories.

Instructions

Analyze an image based on a text prompt to identify and count specific objects, and return detailed descriptions of the objects and their 2D coordinates.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
imageFileUriYesURI of the input image. Preferred for remote or local files. Must start with 'https://' or 'file://'.
textPromptYesNouns of target objects (English only, avoid adjectives). Use periods to separate multiple categories (e.g., 'person.car.traffic light').
includeDescriptionYesWhether to return a description of the objects detected in the image, but will take longer to process.

Implementation Reference

  • Tool configuration defining the name and description for 'detect-objects-by-text' used in MCP server registration.
    [Tool.DETECT_BY_TEXT]: { name: Tool.DETECT_BY_TEXT, description: "Analyze an image based on a text prompt to identify and count specific objects, and return detailed descriptions of the objects and their 2D coordinates.",
  • Core implementation of object detection by text prompt in DinoXApiClient, which calls the DINO-X API and handles polling.
    async detectObjectsByText( imageFileUri: string, textPrompt: string, includeDescription: boolean ): Promise<DetectionResult> { return this.performDetection(imageFileUri, includeDescription, { model: "DINO-X-1.0", prompt: { type: "text", text: textPrompt }, targets: ["bbox"], bbox_threshold: 0.25, iou_threshold: 0.8 }); }
  • MCP tool registration in stdio server: defines Zod input schema, registers 'detect-objects-by-text' with description from constants, and provides handler that calls DinoXApiClient and formats results.
    this.server.tool( name, description, { imageFileUri: z.string().describe("URI of the input image. Preferred for remote or local files. Must start with 'https://' or 'file://'."), textPrompt: z.string().describe("Nouns of target objects (English only, avoid adjectives). Use periods to separate multiple categories (e.g., 'person.car.traffic light')."), includeDescription: z.boolean().describe("Whether to return a description of the objects detected in the image, but will take longer to process."), }, async (args) => { try { const { imageFileUri, textPrompt, includeDescription } = args; if (!imageFileUri || !textPrompt) { return { content: [ { type: 'text', text: 'Image file URI and text prompt are required', }, ], } } const { objects } = await this.api.detectObjectsByText(imageFileUri, textPrompt, includeDescription); const categories: ResultCategory = {}; for (const object of objects) { if (!categories[object.category]) { categories[object.category] = []; } categories[object.category].push(object); } const objectsInfo = objects.map(obj => { const bbox = parseBbox(obj.bbox); return { name: obj.category, bbox, ...(includeDescription ? { description: obj.caption, } : {}), } }); return { content: [ { type: "text", text: `Objects detected in image: ${Object.keys(categories).map(cat => `${cat} (${categories[cat].length})` )?.join(', ')}.` }, { type: "text", text: `Detailed object detection results: ${JSON.stringify((objectsInfo), null, 2)}` }, { type: "text", text: `Note: The bbox coordinates are in {xmin, ymin, xmax, ymax} format, where the origin (0,0) is at the top-left corner of the image. These coordinates help determine the exact position and spatial relationships of objects in the image.` }, ] }; } catch (error) { return { content: [ { type: 'text', text: `Failed to detect objects from image: ${error instanceof Error ? error.message : String(error)}`, }, ], }; } } )
  • MCP tool registration in HTTP server: similar to stdio, with Zod schema and handler wrapping the API client call.
    this.server.tool( name, description, { imageFileUri: z.string().describe("URI of the input image. Preferred for remote or local files. Must start with 'https://.'"), textPrompt: z.string().describe("Nouns of target objects (English only, avoid adjectives). Use periods to separate multiple categories (e.g., 'person.car.traffic light')."), includeDescription: z.boolean().describe("Whether to return a description of the objects detected in the image, but will take longer to process."), }, async (args) => { try { const { imageFileUri, textPrompt, includeDescription } = args; if (!imageFileUri || !textPrompt) { return { content: [ { type: 'text', text: 'Image file URI and text prompt are required', }, ], } } const { objects } = await this.api.detectObjectsByText(imageFileUri, textPrompt, includeDescription); const categories: ResultCategory = {}; for (const object of objects) { if (!categories[object.category]) { categories[object.category] = []; } categories[object.category].push(object); } const objectsInfo = objects.map(obj => { const bbox = parseBbox(obj.bbox); return { name: obj.category, bbox, ...(includeDescription ? { description: obj.caption, } : {}), } }); return { content: [ { type: "text", text: `Objects detected in image: ${Object.keys(categories).map(cat => `${cat} (${categories[cat].length})` )?.join(', ')}.` }, { type: "text", text: `Detailed object detection results: ${JSON.stringify((objectsInfo), null, 2)}` }, { type: "text", text: `Note: The bbox coordinates are in {xmin, ymin, xmax, ymax} format, where the origin (0,0) is at the top-left corner of the image. These coordinates help determine the exact position and spatial relationships of objects in the image.` }, ] }; } catch (error) { return { content: [ { type: 'text', text: `Failed to detect objects from image: ${error instanceof Error ? error.message : String(error)}`, }, ], }; } } )
  • Utility function to parse bounding box array from API response into structured object, used in all tool handlers.
    export const parseBbox = (bbox: number[]) => { return { xmin: parseFloat(bbox[0].toFixed(1)), ymin: parseFloat(bbox[1].toFixed(1)), xmax: parseFloat(bbox[2].toFixed(1)), ymax: parseFloat(bbox[3].toFixed(1)) }; };

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/IDEA-Research/DINO-X-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server