Skip to main content
Glama

ToGMAL MCP Server

HUGGINGFACE_DEPLOYMENT.md•3.74 kB
# šŸš€ HuggingFace Space Deployment Guide ## Status: Ready to Push Your ToGMAL Prompt Difficulty Analyzer is set up and ready to deploy to HuggingFace Spaces! ## What's Been Done āœ… **Repository Cloned**: `Togmal-demo` from HuggingFace Spaces āœ… **Files Copied**: - `app.py` - Main Gradio demo application - `benchmark_vector_db.py` - Vector database implementation - `data/` - Complete vector database with 14,042 benchmark questions - `requirements.txt` - All necessary dependencies āœ… **README Updated**: Professional description with features and usage āœ… **Changes Committed**: All files staged and committed ## šŸ“ Next Step: Push to HuggingFace The code is committed and ready. To push, run: ```bash cd /Users/hetalksinmaths/togmal/Togmal-demo git push -u origin main ``` **You'll be prompted for credentials:** - Username: `JustTheStatsHuman` - Password: Use your **HuggingFace Access Token** (not your account password!) ### Generate Access Token If you don't have a token yet: 1. Go to: https://huggingface.co/settings/tokens 2. Click "New token" 3. Give it **write** permissions 4. Copy the token 5. Paste it when git asks for password ## šŸŽÆ What Will Happen After Push 1. HuggingFace will automatically detect `requirements.txt` 2. Install all dependencies (gradio, sentence-transformers, chromadb, etc.) 3. Start the Gradio app from `app.py` 4. Your space will be live at: https://huggingface.co/spaces/JustTheStatsHuman/Togmal-demo ## šŸ“¦ Files Included ``` Togmal-demo/ ā”œā”€ā”€ app.py # Main Gradio interface ā”œā”€ā”€ benchmark_vector_db.py # Vector database class ā”œā”€ā”€ requirements.txt # Python dependencies ā”œā”€ā”€ README.md # HuggingFace Space description └── data/ ā”œā”€ā”€ benchmark_vector_db/ # ChromaDB persistent storage (14,042 questions) └── benchmark_results/ # Real benchmark success rates ``` ## šŸ”§ Features in Your Space - **Real-time Analysis**: Users can enter any prompt - **Vector Similarity Search**: Finds 5 most similar benchmark questions - **Success Rate Prediction**: Shows how well LLMs perform on similar questions - **Risk Assessment**: LOW/MODERATE/HIGH/CRITICAL difficulty levels - **Smart Recommendations**: Actionable suggestions based on difficulty - **Example Prompts**: Pre-loaded examples to try ## šŸŽØ Space Configuration From `README.md` frontmatter: - **SDK**: Gradio 5.42.0 - **Emoji**: 🧠 - **Color**: Yellow to Purple gradient - **License**: Apache 2.0 - **Description**: Prompt difficulty predictor using vector similarity ## šŸ› Troubleshooting If the space fails to build: 1. **Check Build Logs**: HuggingFace will show detailed error logs 2. **Common Issues**: - Large file size: The vector DB is ~10MB, should be fine - Missing dependencies: All listed in requirements.txt - Python version: HuggingFace uses Python 3.10+ by default 3. **Test Locally First**: ```bash cd /Users/hetalksinmaths/togmal/Togmal-demo source ../.venv/bin/activate python app.py ``` ## šŸ“Š Database Stats Your space includes: - **Total Questions**: 14,042 benchmark questions - **Sources**: MMLU (13,900), MMLU-Pro (100), GPQA (36), MATH (6) - **Domains**: 57 different domains (mathematics, physics, medicine, law, etc.) - **Success Rates**: Real performance data from Claude, GPT-4, Gemini ## šŸ”— Related Links - **Your Space**: https://huggingface.co/spaces/JustTheStatsHuman/Togmal-demo - **GitHub Repo**: https://github.com/HeTalksInMaths/togmal-mcp - **Token Settings**: https://huggingface.co/settings/tokens --- **Ready to deploy!** Just run the push command and enter your access token when prompted. šŸš€

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/HeTalksInMaths/togmal-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server