Skip to main content
Glama

get_next_task

Recommends the next task to work on based on priorities, dependencies, team capacity, and current project state for efficient project management.

Instructions

Get AI-powered recommendations for the next task to work on based on priorities, dependencies, team capacity, and current project state

Input Schema

NameRequiredDescriptionDefault
projectIdNo
featureIdNo
assigneeNo
teamSkillsNo
sprintCapacityNo
currentPhaseNo
excludeBlockedYes
maxComplexityNo
includeAnalysisYes
limitYes

Input Schema (JSON Schema)

{ "properties": { "assignee": { "type": "string" }, "currentPhase": { "enum": [ "planning", "development", "testing", "review", "deployment" ] }, "excludeBlocked": { "type": "string" }, "featureId": { "type": "string" }, "includeAnalysis": { "type": "string" }, "limit": { "type": "string" }, "maxComplexity": { "type": "number" }, "projectId": { "type": "string" }, "sprintCapacity": { "type": "number" }, "teamSkills": { "items": { "type": "string" }, "type": "array" } }, "required": [ "excludeBlocked", "includeAnalysis", "limit" ], "type": "object" }

Implementation Reference

  • Main handler function that executes the get_next_task tool logic: processes arguments, generates mock tasks, applies filters, sorts by priority/complexity, generates AI analysis, and returns formatted recommendations.
    async function executeGetNextTask(args: GetNextTaskArgs): Promise<MCPResponse> { const taskService = new TaskGenerationService(); try { // For now, create mock tasks for demonstration // In a full implementation, this would integrate with ResourceManager const mockTasks = [ { id: 'task-1', title: 'Set up project infrastructure', description: 'Initialize project structure, CI/CD, and development environment', priority: 'high', complexity: 4, estimatedHours: 8, status: 'pending', dependencies: [], tags: ['setup', 'infrastructure'] }, { id: 'task-2', title: 'Implement user authentication', description: 'Create login, registration, and password reset functionality', priority: 'critical', complexity: 6, estimatedHours: 16, status: 'pending', dependencies: ['task-1'], tags: ['auth', 'security'] }, { id: 'task-3', title: 'Design database schema', description: 'Create database tables and relationships for core entities', priority: 'high', complexity: 5, estimatedHours: 12, status: 'pending', dependencies: ['task-1'], tags: ['database', 'design'] } ]; // Apply filters let filteredTasks = mockTasks; if (args.maxComplexity) { filteredTasks = filteredTasks.filter(task => task.complexity <= args.maxComplexity!); } if (args.assignee) { // Would filter by assignee in real implementation } // Get recommendations (simplified) const recommendations = filteredTasks .sort((a, b) => { // Sort by priority first, then complexity const priorityOrder = { critical: 4, high: 3, medium: 2, low: 1 }; const priorityDiff = (priorityOrder[b.priority as keyof typeof priorityOrder] || 0) - (priorityOrder[a.priority as keyof typeof priorityOrder] || 0); if (priorityDiff !== 0) return priorityDiff; return a.complexity - b.complexity; // Prefer lower complexity }) .slice(0, args.limit); // Calculate sprint fit const totalHours = recommendations.reduce((sum, task) => sum + task.estimatedHours, 0); const sprintCapacity = args.sprintCapacity || 40; const sprintFit = totalHours <= sprintCapacity; // Generate AI analysis const analysis = args.includeAnalysis ? generateTaskAnalysis(recommendations, args) : null; // Format response const summary = formatNextTaskRecommendations(recommendations, analysis, { totalHours, sprintCapacity, sprintFit, filtersApplied: getAppliedFilters(args) }); return ToolResultFormatter.formatSuccess('get_next_task', { summary, recommendations, analysis, metrics: { totalTasks: recommendations.length, totalHours, sprintCapacity, sprintFit } }); } catch (error) { process.stderr.write(`Error in get_next_task tool: ${error}\n`); return ToolResultFormatter.formatSuccess('get_next_task', { error: `Failed to get task recommendations: ${error instanceof Error ? error.message : 'Unknown error'}`, success: false }); } }
  • Zod schema defining the input parameters for the get_next_task tool, including optional filters like projectId, assignee, sprintCapacity, etc.
    const getNextTaskSchema = z.object({ projectId: z.string().optional().describe('Filter tasks by specific project ID'), featureId: z.string().optional().describe('Filter tasks by specific feature ID'), assignee: z.string().optional().describe('Filter tasks for specific team member'), teamSkills: z.array(z.string()).optional().describe('Team skills to match against task requirements'), sprintCapacity: z.number().optional().describe('Available hours in current sprint (default: 40)'), currentPhase: z.enum(['planning', 'development', 'testing', 'review', 'deployment']).optional() .describe('Focus on tasks in specific phase'), excludeBlocked: z.boolean().default(true).describe('Whether to exclude blocked tasks'), maxComplexity: z.number().min(1).max(10).optional().describe('Maximum task complexity to consider'), includeAnalysis: z.boolean().default(true).describe('Whether to include detailed AI analysis'), limit: z.number().min(1).max(20).default(5).describe('Maximum number of tasks to recommend') });
  • Registration of the getNextTaskTool in the central ToolRegistry singleton during initialization of built-in AI task management tools.
    this.registerTool(addFeatureTool); this.registerTool(generatePRDTool); this.registerTool(parsePRDTool); this.registerTool(getNextTaskTool); this.registerTool(analyzeTaskComplexityTool); this.registerTool(expandTaskTool); this.registerTool(enhancePRDTool); this.registerTool(createTraceabilityMatrixTool);
  • src/index.ts:368-369 (registration)
    Dispatch case in the MCP server request handler that routes 'call_tool' requests for get_next_task to the executeGetNextTask function.
    case "get_next_task": return await executeGetNextTask(args);
  • ToolDefinition object for get_next_task including name, description, schema reference, and usage examples.
    export const getNextTaskTool: ToolDefinition<GetNextTaskArgs> = { name: "get_next_task", description: "Get AI-powered recommendations for the next task to work on based on priorities, dependencies, team capacity, and current project state", schema: getNextTaskSchema as unknown as ToolSchema<GetNextTaskArgs>, examples: [ { name: "Get next task for development", description: "Get the next recommended task for a developer with specific skills", args: { teamSkills: ["typescript", "react", "node.js"], sprintCapacity: 40, maxComplexity: 7, excludeBlocked: true, includeAnalysis: true, limit: 3 } } ] };

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/HarshKumarSharma/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server