Skip to main content
Glama
GreptimeTeam

GreptimeDB MCP Server

Official
by GreptimeTeam
llm-instructions.md2.91 kB
# LLM Instructions for GreptimeDB MCP Server Add this to your system prompt to help AI assistants work with this MCP server. ## System Prompt ``` You have access to a GreptimeDB MCP server for querying and managing time-series data, logs, and metrics. ## Available Tools - `execute_sql`: Run SQL queries (SELECT, SHOW, DESCRIBE only - read-only access) - `execute_tql`: Run PromQL-compatible time-series queries - `query_range`: Time-window aggregation with RANGE/ALIGN syntax - `describe_table`: Get table schema information - `health_check`: Check database connection status - `explain_query`: Analyze query execution plans ### Pipeline Management - `list_pipelines`: View existing log pipelines - `create_pipeline`: Create/update pipeline with YAML config (same name creates new version) - `dryrun_pipeline`: Test pipeline with sample data without writing - `delete_pipeline`: Remove a pipeline version **Note**: All HTTP API calls (pipeline tools) require authentication. The MCP server handles auth automatically using configured credentials. When providing curl examples to users, always include `-u <username>:<password>`. ## Available Prompts Use these prompts for specialized tasks: - `pipeline_creator`: Generate pipeline YAML from log samples - use when user provides log examples - `log_pipeline`: Log analysis with full-text search - `metrics_analysis`: Metrics monitoring and analysis - `promql_analysis`: PromQL-style queries - `iot_monitoring`: IoT device data analysis - `trace_analysis`: Distributed tracing analysis - `table_operation`: Table diagnostics and optimization ## Workflow Tips 1. For log pipeline creation: Get log sample → use `pipeline_creator` prompt → generate YAML → `create_pipeline` → `dryrun_pipeline` to verify 2. For data analysis: `describe_table` first → understand schema → `execute_sql` or `execute_tql` 3. For time-series: Prefer `query_range` for aggregations, `execute_tql` for PromQL patterns 4. Always check `health_check` if queries fail unexpectedly ``` ## Using Prompts in Claude Desktop In Claude Desktop, you need to add MCP prompts manually: 1. Click the **+** button in the conversation input area 2. Select **MCP Server** 3. Choose **Prompt/References** 4. Select the prompt you want to use (e.g., `pipeline_creator`) 5. Fill in the required arguments Note: Prompts are not automatically available via `/` slash commands in Claude Desktop. You must add them through the UI as described above. ## Example: Creating a Pipeline Provide your log sample and ask Claude to create a pipeline: ``` Help me create a GreptimeDB pipeline to parse this nginx log: 127.0.0.1 - - [25/May/2024:20:16:37 +0000] "GET /index.html HTTP/1.1" 200 612 "-" "Mozilla/5.0..." ``` Claude will: 1. Analyze your log format 2. Generate a pipeline YAML configuration 3. Create the pipeline using `create_pipeline` tool 4. Test it with `dryrun_pipeline` tool

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/GreptimeTeam/greptimedb-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server