Skip to main content
Glama

Image Generation MCP Server

index.ts6.43 kB
#!/usr/bin/env node import { Server } from '@modelcontextprotocol/sdk/server/index.js'; import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js'; import { CallToolRequestSchema, ErrorCode, ListToolsRequestSchema, McpError, } from '@modelcontextprotocol/sdk/types.js'; import axios from 'axios'; const REPLICATE_API_TOKEN = process.env.REPLICATE_API_TOKEN; if (!REPLICATE_API_TOKEN) { throw new Error('REPLICATE_API_TOKEN environment variable is required'); } interface FluxInput { prompt: string; seed?: number; go_fast?: boolean; megapixels?: '1' | '0.25'; num_outputs?: number; aspect_ratio?: '1:1' | '16:9' | '21:9' | '3:2' | '2:3' | '4:5' | '5:4' | '3:4' | '4:3' | '9:16' | '9:21'; output_format?: 'webp' | 'jpg' | 'png'; output_quality?: number; num_inference_steps?: number; disable_safety_checker?: boolean; } class ImageGenerationServer { private server: Server; private axiosInstance; private readonly MODEL = process.env.MODEL || 'black-forest-labs/flux-schnell'; constructor() { this.server = new Server( { name: 'image-generation-server', version: '0.1.0', }, { capabilities: { tools: {}, }, } ); this.axiosInstance = axios.create({ baseURL: 'https://api.replicate.com/v1', headers: { 'Authorization': `Token ${REPLICATE_API_TOKEN}`, 'Content-Type': 'application/json', }, }); this.setupToolHandlers(); // Error handling this.server.onerror = (error) => console.error('[MCP Error]', error); process.on('SIGINT', async () => { await this.server.close(); process.exit(0); }); } private setupToolHandlers() { this.server.setRequestHandler(ListToolsRequestSchema, async () => ({ tools: [ { name: 'generate_image', description: 'Generate an image using the Flux model', inputSchema: { type: 'object', properties: { prompt: { type: 'string', description: 'Prompt for generated image', }, seed: { type: 'integer', description: 'Random seed for reproducible generation', }, aspect_ratio: { type: 'string', enum: ['1:1', '16:9', '21:9', '3:2', '2:3', '4:5', '5:4', '3:4', '4:3', '9:16', '9:21'], description: 'Aspect ratio for the generated image', default: '1:1', }, output_format: { type: 'string', enum: ['webp', 'jpg', 'png'], description: 'Format of the output images', default: 'webp', }, num_outputs: { type: 'integer', description: 'Number of outputs to generate (1-4)', default: 1, minimum: 1, maximum: 4, }, }, required: ['prompt'], }, }, ], })); this.server.setRequestHandler(CallToolRequestSchema, async (request) => { if (request.params.name !== 'generate_image') { throw new McpError( ErrorCode.MethodNotFound, `Unknown tool: ${request.params.name}` ); } // Validate input arguments if (!request.params.arguments || typeof request.params.arguments !== 'object') { throw new McpError( ErrorCode.InvalidParams, 'Arguments must be an object' ); } if (!('prompt' in request.params.arguments) || typeof request.params.arguments.prompt !== 'string') { throw new McpError( ErrorCode.InvalidParams, 'Prompt is required and must be a string' ); } const input: FluxInput = { prompt: request.params.arguments.prompt, }; // Add optional parameters if they exist and are valid if ('seed' in request.params.arguments && typeof request.params.arguments.seed === 'number') { input.seed = request.params.arguments.seed; } if ('aspect_ratio' in request.params.arguments && typeof request.params.arguments.aspect_ratio === 'string') { input.aspect_ratio = request.params.arguments.aspect_ratio as FluxInput['aspect_ratio']; } if ('output_format' in request.params.arguments && typeof request.params.arguments.output_format === 'string') { input.output_format = request.params.arguments.output_format as FluxInput['output_format']; } if ('num_outputs' in request.params.arguments && typeof request.params.arguments.num_outputs === 'number') { input.num_outputs = Math.min(Math.max(1, request.params.arguments.num_outputs), 4); } try { // Create prediction const createResponse = await this.axiosInstance.post('/predictions', { version: this.MODEL, input, }); const predictionId = createResponse.data.id; // Poll for completion while (true) { const getResponse = await this.axiosInstance.get(`/predictions/${predictionId}`); const prediction = getResponse.data; if (prediction.status === 'succeeded') { return { content: [ { type: 'text', text: JSON.stringify(prediction.output), }, ], }; } else if (prediction.status === 'failed') { throw new McpError( ErrorCode.InternalError, `Image generation failed: ${prediction.error || 'Unknown error'}` ); } // Wait before polling again await new Promise(resolve => setTimeout(resolve, 1000)); } } catch (error) { if (axios.isAxiosError(error)) { throw new McpError( ErrorCode.InternalError, `Replicate API error: ${error.response?.data?.detail || error.message}` ); } throw error; } }); } async run() { const transport = new StdioServerTransport(); await this.server.connect(transport); console.error('Image Generation MCP server running on stdio'); } } const server = new ImageGenerationServer(); server.run().catch(console.error);

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/GongRzhe/Image-Generation-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server