Skip to main content
Glama

edit_image

Modify existing images using text prompts with DALL-E AI, allowing users to add, remove, or alter elements while preserving specified areas through masking.

Instructions

Edit an existing image using DALL-E based on a text prompt

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
promptYesText description of the desired edits
imagePathYesPath to the image to edit
maskNoPath to the mask image (white areas will be edited, black areas preserved)
modelNoDALL-E model to use (currently only dall-e-2 supports editing)
sizeNoSize of the generated image
nNoNumber of images to generate (1-10)
saveDirNoDirectory to save the edited images
fileNameNoBase filename for the edited images (without extension)

Implementation Reference

  • The main tool handler function for 'edit_image'. Resolves image and mask paths to absolute, calls dalleService.editImage with parameters, handles success/error responses, and formats the ToolResponse with saved image paths.
    handler: async (args: EditImageArgs): Promise<ToolResponse> => { // Resolve relative paths to absolute paths const imagePath = path.isAbsolute(args.imagePath) ? args.imagePath : path.resolve(process.cwd(), args.imagePath); const mask = args.mask && !path.isAbsolute(args.mask) ? path.resolve(process.cwd(), args.mask) : args.mask; const result = await dalleService.editImage(args.prompt, imagePath, { mask, model: args.model, size: args.size, n: args.n, saveDir: args.saveDir, fileName: args.fileName }); if (!result.success) { return { content: [{ type: "text", text: `Error editing image: ${result.error}` }] }; } const imagePaths = result.imagePaths || []; const imageCount = imagePaths.length; const model = result.model || 'dall-e-2'; let responseText = `Successfully edited image and generated ${imageCount} variation${imageCount !== 1 ? 's' : ''} using ${model}.\n\n`; responseText += `Original image: ${imagePath}\n`; if (mask) { responseText += `Mask: ${mask}\n`; } responseText += `Prompt: "${result.prompt}"\n\n`; responseText += `Edited image${imageCount !== 1 ? 's' : ''} saved to:\n`; imagePaths.forEach(imagePath => { responseText += `- ${imagePath}\n`; }); return { content: [{ type: "text", text: responseText }] }; }
  • TypeScript interface EditImageArgs defining the input schema for the edit_image tool, including required prompt and imagePath, optional mask, model, size, n, saveDir, fileName.
    export interface EditImageArgs { prompt: string; imagePath: string; mask?: string; model?: string; size?: string; n?: number; saveDir?: string; fileName?: string; }
  • Full tool object definition and registration in the exported tools array, specifying name 'edit_image', description, inputSchema (JSON schema mirroring EditImageArgs), and handler reference.
    { name: "edit_image", description: "Edit an existing image using DALL-E based on a text prompt", inputSchema: { type: "object", properties: { prompt: { type: "string", description: "Text description of the desired edits" }, imagePath: { type: "string", description: "Path to the image to edit" }, mask: { type: "string", description: "Path to the mask image (white areas will be edited, black areas preserved)" }, model: { type: "string", description: "DALL-E model to use (currently only dall-e-2 supports editing)", enum: ["dall-e-2"] }, size: { type: "string", description: "Size of the generated image", enum: ["256x256", "512x512", "1024x1024"] }, n: { type: "number", description: "Number of images to generate (1-10)", minimum: 1, maximum: 10 }, saveDir: { type: "string", description: "Directory to save the edited images" }, fileName: { type: "string", description: "Base filename for the edited images (without extension)" } }, required: ["prompt", "imagePath"] }, handler: async (args: EditImageArgs): Promise<ToolResponse> => { // Resolve relative paths to absolute paths const imagePath = path.isAbsolute(args.imagePath) ? args.imagePath : path.resolve(process.cwd(), args.imagePath); const mask = args.mask && !path.isAbsolute(args.mask) ? path.resolve(process.cwd(), args.mask) : args.mask; const result = await dalleService.editImage(args.prompt, imagePath, { mask, model: args.model, size: args.size, n: args.n, saveDir: args.saveDir, fileName: args.fileName }); if (!result.success) { return { content: [{ type: "text", text: `Error editing image: ${result.error}` }] }; } const imagePaths = result.imagePaths || []; const imageCount = imagePaths.length; const model = result.model || 'dall-e-2'; let responseText = `Successfully edited image and generated ${imageCount} variation${imageCount !== 1 ? 's' : ''} using ${model}.\n\n`; responseText += `Original image: ${imagePath}\n`; if (mask) { responseText += `Mask: ${mask}\n`; } responseText += `Prompt: "${result.prompt}"\n\n`; responseText += `Edited image${imageCount !== 1 ? 's' : ''} saved to:\n`; imagePaths.forEach(imagePath => { responseText += `- ${imagePath}\n`; }); return { content: [{ type: "text", text: responseText }] }; }
  • DalleService.editImage helper method implementing the core logic: validates files, prepares multipart form data with image/mask, calls OpenAI /images/edits API, decodes b64 images, saves to disk, returns ImageGenerationResult.
    async editImage( prompt: string, imagePath: string, options: { mask?: string; model?: string; size?: string; n?: number; saveDir?: string; fileName?: string; } = {} ): Promise<ImageGenerationResult> { try { // Set default options const model = options.model || 'dall-e-2'; // DALL-E 3 doesn't support image edits yet const size = options.size || '1024x1024'; const n = options.n || 1; const saveDir = options.saveDir || this.config.defaultSaveDir || process.cwd(); const fileName = options.fileName || `dalle-edit-${Date.now()}`; // Ensure save directory exists await fs.ensureDir(saveDir); // Check if image exists if (!await fs.pathExists(imagePath)) { return { success: false, error: `Image file not found: ${imagePath}` }; } // Check if mask exists if provided if (options.mask && !await fs.pathExists(options.mask)) { return { success: false, error: `Mask file not found: ${options.mask}` }; } // Create form data const formData = new FormData(); formData.append('prompt', prompt); formData.append('n', n.toString()); formData.append('size', size); formData.append('response_format', 'b64_json'); // Read image file and append to form const imageBuffer = await fs.readFile(imagePath); formData.append('image', imageBuffer, { filename: path.basename(imagePath), contentType: 'image/png' }); // Add mask if provided if (options.mask) { const maskBuffer = await fs.readFile(options.mask); formData.append('mask', maskBuffer, { filename: path.basename(options.mask), contentType: 'image/png' }); } // Make request to OpenAI API const response = await axios.post( `${this.baseUrl}/images/edits`, formData, { headers: { 'Content-Type': 'multipart/form-data', 'Authorization': `Bearer ${this.config.apiKey}` } } ); // Process response const data = response.data; const imagePaths: string[] = []; // Save each image for (let i = 0; i < data.data.length; i++) { const item = data.data[i]; const resultBuffer = Buffer.from(item.b64_json, 'base64'); let resultPath = path.join(saveDir, `${fileName}${n > 1 ? `-${i + 1}` : ''}.png`); // Ensure the path is absolute if (!path.isAbsolute(resultPath)) { resultPath = path.resolve(process.cwd(), resultPath); } await fs.writeFile(resultPath, resultBuffer); imagePaths.push(resultPath); } return { success: true, imagePaths, model, prompt }; } catch (error) { console.log("DALL-E API Error:", error); let errorMessage = 'Failed to edit image'; if (axios.isAxiosError(error) && error.response?.data?.error) { errorMessage = `DALL-E API Error: ${error.response.data.error.message}`; } else if (error instanceof Error) { errorMessage = error.message; } return { success: false, error: errorMessage }; } }
  • src/index.ts:85-86 (registration)
    Dispatch logic in MCP server's CallToolRequestSchema handler: switch case for 'edit_image' that casts arguments and invokes the tool handler.
    case 'edit_image': response = await (tool as Tool<EditImageArgs>).handler(args as unknown as EditImageArgs);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Garoth/dalle-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server