Skip to main content
Glama

privateGPT MCP Server

by Fujitsu-AI
README.md1.95 kB
# PrivateGPT Multi-Backend Demo Chat App ## Description This is a small demo demonstrating the usage of both, the VLLM API and the PrivateGPT API via RAG. Note: This is still under development and might change in the future --- ## Prerequisites - Python 3.8 or higher - Access to the PrivateGPT server - Access to the VLLM API on PrivateGPT --- ## Setup 1. **Clone the repository:** ```bash git clone [https://github.com/Fujitsu-AI/MCP-Server-for-MAS-Developments.git](https://github.com/Fujitsu-AI/MCP-Server-for-MAS-Developments.git) cd MCP-Server-for-MAS-Developments/ ``` 2. **Optional: Create and activate a virtual environment:** ```bash python -m venv venv ``` - **Windows:** ```bash .\venv\Scripts\activate ``` - **Unix/MacOS:** ```bash source venv/bin/activate ``` 3. **Install dependencies:** ```bash pip install -r .\clients\Gradio\requirements.txt ``` 4. **Customise configuration file:** - 4.1 **Configuration for Gradio Client:** Copy the `config.json.example` file to `config.json` e.g. with `cp .\clients\Gradio\config.json.example .\clients\Gradio\config.json` Make sure that the `config.json` is configured correctly and contains all necessary fields. The file should look like this: ```json { "base_url": "https://.../api/v1", "proxy_user": "", "proxy_password": "", "access_header": "", "vllm_url": "https://.../api/v1", "vllm_api_key": "", "language": "en", "use_public": true } ``` 5. **Start the UI:** - 5.1 **Start the multi-backend Gradio Client Demo:** ```bash python -m clients.Gradio.main ``` ## License This project is licensed under the MIT License - see the LICENSE file for details.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Fujitsu-AI/MCP-Server-for-MAS-Developments'

If you have feedback or need assistance with the MCP directory API, please join our Discord server