Skip to main content
Glama

workflows-mcp

by FiveOhhWon

create_workflow

Design and implement multi-step workflows with structured steps, dependencies, and configurations to automate tasks, enabling efficient task management and streamlined processes using MCP tools and cognitive actions.

Instructions

Create a new workflow with specified steps and configuration.

WORKFLOW STRUCTURE:

  • name: Descriptive workflow name
  • description: What the workflow accomplishes
  • goal: The end result or outcome
  • version: Semantic version (default: "1.0.0")
  • tags: Array of categorization tags
  • inputs: Object defining input parameters with type, description, required, and optional default
  • outputs: Array of expected output variable names
  • required_tools: Array of MCP tools this workflow needs
  • steps: Array of workflow steps (see below)
  • strict_dependencies: Boolean to enable strict dependency mode (default: false)
    • false: Steps without dependencies see all variables (backward compatible)
    • true: Steps without dependencies see NO variables (must explicitly declare dependencies)

AVAILABLE ACTIONS:

  • tool_call: Execute an MCP tool (requires tool_name and parameters)
  • analyze: Analyze data and extract insights
  • consider: Evaluate options or possibilities
  • research: Gather information on a topic
  • validate: Check data quality or correctness
  • summarize: Create a summary of information
  • decide: Make a decision based on criteria
  • wait_for_input: Request user input (requires prompt)
  • transform: Transform data (requires transformation description)
  • extract: Extract specific information
  • compose: Create new content
  • branch: Conditional branching (requires conditions array)
  • checkpoint: Save progress checkpoint
  • notify: Send a notification (requires message)
  • assert: Verify a condition (requires condition)
  • retry: Retry a previous step (requires step_id)

STEP STRUCTURE: { "id": 1, // Sequential number starting from 1 "action": "action_type", "description": "What this step does", "save_result_as": "variable_name", // Optional: save result "error_handling": "stop|continue|retry", // Default: "stop" "dependencies": [1, 3], // Optional: only show outputs from these step IDs "show_all_variables": true, // Optional: override to show all variables

// For tool_call: "tool_name": "mcp_tool_name", "parameters": { "param": "value" },

// For cognitive actions (analyze, consider, research, etc): "input_from": ["variable1", "variable2"], // Input variables "criteria": "Specific criteria or focus", // Optional

// For branch: "conditions": [ { "if": "variable.property > value", "goto_step": 5 } ],

// For wait_for_input: "prompt": "Question for the user", "input_type": "text|number|boolean|json",

// For transform: "transformation": "Description of transformation" }

TEMPLATE VARIABLES: Use {{variable_name}} in any string field to reference:

  • Input parameters from workflow inputs
  • Results saved from previous steps via save_result_as
  • Any variables in the workflow state

EXAMPLES:

  • "path": "output_{{format}}.txt"
  • "prompt": "Process {{count}} items?"
  • "description": "Analyzing {{filename}}"

DEPENDENCY MANAGEMENT:

  • Use "dependencies" array to specify which previous steps' outputs are needed
  • In strict_dependencies mode, steps without dependencies see NO variables
  • Steps with dependencies only see outputs from those specific steps + workflow inputs
  • Use "show_all_variables": true to override and see all variables for a specific step

PERFORMANCE FEATURES:

  • Only relevant variables are shown based on dependencies (reduces token usage)
  • Variable changes are highlighted (+ for new, ~ for modified)
  • Only next 3 steps are previewed (progressive loading)

BEST PRACTICES:

  1. Each step should have a single, clear responsibility
  2. Use descriptive variable names for save_result_as
  3. Consider error handling for each step (stop, continue, or retry)
  4. Branch conditions should cover all cases
  5. Order steps logically with proper dependencies
  6. Use strict_dependencies for workflows with large/verbose outputs
  7. Explicitly declare dependencies to minimize context and improve performance

Input Schema

NameRequiredDescriptionDefault
workflowYes

Input Schema (JSON Schema)

{ "properties": { "workflow": { "properties": { "description": { "type": "string" }, "goal": { "type": "string" }, "inputs": { "additionalProperties": { "properties": { "default": {}, "description": { "type": "string" }, "required": { "default": true, "type": "boolean" }, "type": { "enum": [ "string", "number", "boolean", "array", "object" ], "type": "string" } }, "required": [ "type", "description", "required" ], "type": "object" }, "type": "object" }, "name": { "type": "string" }, "outputs": { "items": { "type": "string" }, "type": "array" }, "required_tools": { "items": { "type": "string" }, "type": "array" }, "steps": { "items": {}, "type": "array" }, "tags": { "items": { "type": "string" }, "type": "array" }, "version": { "type": "string" } }, "required": [ "name", "description", "goal", "steps" ], "type": "object" } }, "required": [ "workflow" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/FiveOhhWon/workflows-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server