Skip to main content
Glama
download_model_standalone.py2.25 kB
#!/usr/bin/env python3 """Standalone model download script that doesn't depend on our modules.""" import os import sys import logging from pathlib import Path try: from sentence_transformers import SentenceTransformer except ImportError: print("sentence-transformers not installed. Install with: uv add sentence-transformers") sys.exit(1) def download_model(model_name: str = "google/embeddinggemma-300m", storage_dir: str = None): """Download the embedding model.""" if storage_dir is None: storage_dir = os.path.expanduser("~/.claude_code_search") # Create storage directory storage_path = Path(storage_dir) models_dir = storage_path / "models" models_dir.mkdir(parents=True, exist_ok=True) print(f"Downloading model: {model_name}") print(f"Storage directory: {models_dir}") try: # Download and cache the model model = SentenceTransformer( model_name, cache_folder=str(models_dir), device="cpu" # Use CPU to avoid GPU issues ) print("Testing model...") test_text = "def hello_world():\n return 'Hello, World!'" embedding = model.encode([test_text]) print(f"Model downloaded successfully!") print(f"Embedding dimension: {embedding.shape[1]}") print(f"Model cached in: {models_dir}") return True except Exception as e: print(f"Error downloading model: {e}") return False if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Download embedding model for testing") parser.add_argument( "--model", default="google/embeddinggemma-300m", help="Model name to download" ) parser.add_argument( "--storage-dir", help="Storage directory (default: ~/.claude_code_search)" ) parser.add_argument( "--verbose", "-v", action="store_true", help="Verbose logging" ) args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.INFO) success = download_model(args.model, args.storage_dir) sys.exit(0 if success else 1)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/FarhanAliRaza/claude-context-local'

If you have feedback or need assistance with the MCP directory API, please join our Discord server