Skip to main content
Glama
test_query_service.py1.83 kB
from __future__ import annotations import polars as pl from spice_mcp.core.models import ( QueryRequest, QueryResult, ResultMetadata, ResultPreview, ) from spice_mcp.service_layer.query_service import QueryService class StubExecutor: def __init__(self): self.calls = [] def execute(self, request: QueryRequest) -> QueryResult: self.calls.append(request) df = pl.DataFrame({"a": [1, 2, 3], "b": ["x", "y", "z"]}) lf = df.lazy() preview = ResultPreview( rowcount=3, columns=list(df.columns), data_preview=lf.limit(10).collect().to_dicts(), ) meta = ResultMetadata(execution={"execution_id": "e-1"}, duration_ms=12, metadata={"state": "completed"}) return QueryResult(preview=preview, info=meta, lazyframe=lf) def fetch_metadata(self, request: QueryRequest, *, execution=None) -> ResultMetadata: return ResultMetadata(execution=execution or {}, duration_ms=0, metadata={"state": "completed"}) def test_query_service_shapes_output(): executor = StubExecutor() svc = QueryService(executor) out = svc.execute(query="SELECT 1", limit=2, include_execution=True) assert set(["rowcount", "columns", "data_preview", "execution", "duration_ms"]).issubset(out) assert out["rowcount"] == 3 assert out["columns"] == ["a", "b"] assert isinstance(out["data_preview"], list) assert len(out["data_preview"]) == 3 assert out["execution"]["execution_id"] == "e-1" assert out.get("metadata") == {"state": "completed"} def test_query_service_return_raw_data(): executor = StubExecutor() svc = QueryService(executor) out = svc.execute(query="SELECT 1", return_raw=True) assert out["data"] == [{"a": 1, "b": "x"}, {"a": 2, "b": "y"}, {"a": 3, "b": "z"}]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Evan-Kim2028/spice-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server