Skip to main content
Glama

Model Coupling Platform Server

by EstebanIIT
hdf5_handler.py1.98 kB
from pathlib import Path from datetime import datetime async def list_hdf5_files(path_pattern: str = ""): """Simulate listing HDF5 files using pathlib-style interaction with Unix-style paths""" # Create a mock filesystem structure mock_root = Path("/data") mock_files = [ mock_root / "simulations/run_1.hdf5", mock_root / "simulations/run_2.hdf5", mock_root / "archive/exp_1.hdf5", mock_root / "archive/exp_2.hdf5", mock_root / "temp/test.hdf5", mock_root / "config/settings.json", Path("/data/sim_run_123/results_1.hdf5"), Path("/data/sim_run_123/results_2.hdf5"), Path("/data/sim_run_123/SumUp.txt"), Path("/data/sim_run_123/SumUp_2.txt") ] # Convert path_pattern to Path object for consistent handling search_path = Path(path_pattern) if path_pattern else Path("/data") # Simulate glob-style matching, ensuring only HDF5 files and proper substring match matched = [ str(file.as_posix()) for file in mock_files # Ensure Unix-style path strings if file.suffix == ".hdf5" and str(search_path) in str(file) ] # Simulate directory existence check (returns an error if the parent dir isn't found) if path_pattern and not any(str(search_path) in str(f.parent) for f in mock_files): return { "files": [], "count": 0, "metadata": { "query": path_pattern, "timestamp": datetime.now().isoformat(), "error": f"Directory not found: {path_pattern}", "mock_data": True } } return { "files": matched, "count": len(matched), "metadata": { "query": path_pattern, "timestamp": datetime.now().isoformat(), "mock_data": True, "matched_pattern": f"*{search_path.name}*.hdf5" if search_path.name else "*.hdf5" } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/EstebanIIT/CS550_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server