# LoL Data MCP Server - Complete Project Documentation
**Version:** 2.3.1 (Performance Optimized)
**Date:** July 2025
**Project Goal:** To develop a comprehensive Model Context Protocol (MCP) server that provides real-time, structured access to League of Legends game data, advanced gameplay analysis, **prepared training datasets for imitation learning**, and AI research capabilities for development environments, AI agents, and reinforcement learning applications.
---
**๐๏ธ Updated Project Structure**
```
Project Taric/Lol_Data_MCP_Server/
โโโ src/
โ โโโ mcp_server/
โ โ โโโ __init__.py
โ โ โโโ stdio_server.py # โ
Stdio MCP server for Cursor
โ โ โโโ server.py # FastAPI web server (if needed)
โ โ โโโ mcp_handler.py # โ
UPDATED: Handles 7 tools
โ โ โโโ tools.py # โ
7 LoL data tools implemented
โ โโโ services/
โ โ โโโ champion_service.py # โ
Live wiki data with fallback
โ โ โโโ stats_service.py # โ
Level-specific stats service
โ โ โโโ abilities_service.py # โ
Enhanced ability details service
โ โ โโโ patch_note_service.py # โ
Champion patch history service
โ โโโ data_sources/
โ โ โโโ scrapers/
โ โ โโโ base_scraper.py # โ
Enhanced base class with caching
โ โ โโโ wiki_scraper.py # โ
General wiki scraping
โ โ โโโ stats_scraper.py # โ
Selenium level-specific scraping
โ โ โโโ abilities_scraper.py # โ
Detailed ability mechanics
โ โ โโโ patch_note_scraper.py # โ
Patch history extraction
โ โ โโโ items/ # โ
COMPLETED: Item scraper modules
โ โ โโโ __init__.py # โ
Package initialization
โ โ โโโ item_data_scraper.py # โ
Comprehensive item data scraper
โ โโโ core/
โ โโโ config.py # โ
Multi-environment config system
โโโ config/ # โ
YAML configuration files
โโโ docs/ # โ
Comprehensive documentation
โโโ tests/ # โ
Extensive test suite
โโโ venv/ # โ
Virtual environment
```
**๐ฎ Core MCP Tools (9 Available)**
1. **get_champion_stats** - Retrieves champion statistics with optional level parameter (1-18)
2. **get_champion_abilities** - Comprehensive ability details with enhanced mechanics
3. **get_ability_details** - Enhanced ability details with Details tab interaction
4. **get_champion_patch_note** - Historical patch changes and balance updates
5. **search_champions** - Champion search with fuzzy matching capabilities
6. **get_item_data** - โ
**COMPLETED**: Item statistics, recipe, cost analysis, notes, similar items
7. **get_item_patch_note** - โ
**COMPLETED**: Item patch history and balance changes
8. **get_rune_data** - โ
**COMPLETED**: Rune sidebar, notes, and strategy information
9. **get_rune_patch_note** - โ
**COMPLETED**: Rune patch history and balance changes
10. **ping** - Connectivity testing and health check
11. **server_info** - Server status and comprehensive information
**๐ง Cursor Integration Configuration**
```json
{
"mcpServers": {
"lol-data": {
"command": "powershell",
"args": ["-Command", "& { cd 'C:\\Users\\tarik\\OneDrive\\Masaรผstรผ\\Python\\Reinforcement Learning Projects\\Project Taric\\Lol_Data_MCP_Server'; .\\venv\\Scripts\\Activate.ps1; python -m src.mcp_server.stdio_server }"]
}
}
}
```
## I. Vision & Scope
### Problem Statement
- **Data Fragmentation**: LoL data is scattered across wiki, APIs, and community sources
- **Development Friction**: Manual data gathering slows development of LoL-related projects
- **Data Staleness**: Game patches constantly change champion/item stats
- **Format Inconsistency**: Different data sources use different formats and structures
- **Training Data Gaps**: No unified system for generating AI training data from gameplay
- **Analysis Complexity**: Sophisticated gameplay analysis requires complex data processing
- **Imitation Learning Barriers**: Researchers need processed, ready-to-train datasets, not raw data
### Solution
Create a unified, intelligent MCP server that:
- **Aggregates** data from multiple sources (Wiki, Riot API, Community APIs)
- **Normalizes** data into consistent, structured formats
- **Caches** intelligently for performance while staying current
- **Serves** data through MCP protocol for direct IDE integration
- **Generates** state-action pairs for reinforcement learning
- **Analyzes** gameplay frame-by-frame with enhanced metrics
- **Provides** **ready-to-train datasets** for imitation learning and AI research
- **Delivers** both raw and processed data based on user needs
### Success Criteria
- **Performance**: Sub-100ms response times for cached data
- **Accuracy**: 99.9% data accuracy compared to official sources
- **Coverage**: 160+ champions, 200+ items, all major game mechanics
- **Integration**: Seamless MCP integration with popular IDEs
- **Reliability**: 99.5% uptime with automatic failover
- **Training Data**: Generate comprehensive state-action pairs for any champion
- **Analysis Depth**: Frame-by-frame analysis with 40+ gameplay scenarios
- **Imitation Learning Ready**: Serve processed datasets immediately usable for training
---
## II. Requirements & Features
### R1: MCP Protocol Implementation
- **R1.1**: Full MCP server compliance with protocol specification
- **R1.2**: WebSocket and HTTP transport support
- **R1.3**: Standard MCP tool definitions for all data endpoints
- **R1.4**: Error handling and status reporting via MCP
- **R1.5**: Client authentication and rate limiting
### R2: Data Sources Integration
- **R2.1**: League of Legends Wiki scraping and parsing
- **R2.2**: Riot Games API integration (Data Dragon, Live API)
- **R2.3**: Community API integration (op.gg, lolalytics, etc.)
- **R2.4**: Patch detection and automatic data refresh
- **R2.5**: Data validation and conflict resolution
### R3: Champion Data Management
- **R3.1**: Complete champion roster (160+ champions)
- **R3.2**: Base stats and growth per level
- **R3.3**: Ability details (damage, cooldowns, scaling, mechanics)
- **R3.4**: Recommended builds and skill orders
- **R3.5**: Historical patch changes and meta evolution
### R4: Item Data Management
- **R4.1**: All items with stats and costs
- **R4.2**: Item components and build paths
- **R4.3**: Active and passive effects
- **R4.4**: Item interactions and synergies
- **R4.5**: Cost efficiency calculations
### R5: Game Mechanics Data
- **R5.1**: Minion stats and wave patterns
- **R5.2**: Turret behavior and stats
- **R5.3**: Jungle monsters and objectives
- **R5.4**: Experience and gold curves
- **R5.5**: Game rules and formulas
### R6: Query Engine & Search
- **R6.1**: Complex queries across data relationships
- **R6.2**: Full-text search capabilities
- **R6.3**: Filtering and sorting options
- **R6.4**: Aggregation and statistics
- **R6.5**: Query optimization and caching
### R7: Performance & Reliability
- **R7.1**: Intelligent caching with TTL management
- **R7.2**: Database optimization for fast queries
- **R7.3**: Horizontal scaling capabilities
- **R7.4**: Health monitoring and alerting
- **R7.5**: Graceful degradation under load
### ๐ R8: Advanced Gameplay Analysis
- **R8.1**: Frame-by-frame match timeline analysis
- **R8.2**: State-action pair generation for reinforcement learning
- **R8.3**: Enhanced data extraction (positioning, combat metrics, decision context)
- **R8.4**: Player-specific gameplay pattern analysis
- **R8.5**: Comprehensive scenario generation (40+ gameplay scenarios)
### ๐ฏ R9: Imitation Learning Data Services (NEW)
- **R9.1**: **Ready-to-train dataset generation** for immediate use
- **R9.2**: **Preprocessed state-action pairs** with enhanced features
- **R9.3**: **Multi-format export** (JSON, Parquet, HDF5, PyTorch tensors)
- **R9.4**: **Player-specific demonstration datasets** from high-ELO players
- **R9.5**: **Scenario-labeled training data** for targeted learning
- **R9.6**: **Data quality validation** and filtering for training suitability
- **R9.7**: **Incremental dataset updates** and versioning
### ๐ R10: Training Data Generation
- **R10.1**: High-ELO player data collection and processing
- **R10.2**: Champion-specific training dataset creation
- **R10.3**: Temporal gameplay event extraction
- **R10.4**: Cooldown tracking with ability haste calculations
- **R10.5**: Multi-level reward signal computation
### ๐ R11: Personalized Analytics
- **R11.1**: Individual player performance analysis
- **R11.2**: Meta comparison and trend analysis
- **R11.3**: Build effectiveness scoring against current meta
- **R11.4**: Gameplay improvement recommendations
- **R11.5**: Cross-patch performance tracking
---
## III. Detailed Implementation Plan (Task-Oriented for AI Assistant)
This section breaks down the Requirements (R-sections) into granular, sequential tasks for implementation. Each task specifies its objective, target file(s), and precise instructions.
**Overall Approach:** Iterative development starting with a minimal viable MCP server, then progressively adding data sources, caching, advanced analysis features, and **imitation learning dataset generation**. **Priority: Get researchers training-ready data quickly while building comprehensive analysis capabilities.**
---
## Phase 1: MCP Server Foundation (COMPLETED โ
)
### โ
**Task 1.1: Project Structure and Environment Setup** *(COMPLETED)*
**Objective:** Create comprehensive project structure with proper Python package layout
**File(s):** `pyproject.toml`, `requirements.txt`, basic folder structure
**Status:** โ
**COMPLETED** - December 2024
**Instructions for AI:**
1. โ
Create root directory `Lol_Data_MCP_Server/`
2. โ
Initialize Git repository
3. โ
Create `pyproject.toml` with project metadata and dependencies (FastAPI, pydantic, etc.)
4. โ
Create `requirements.txt` with core and development dependencies.
5. โ
Create basic folder structure: `src/`, `tests/`, `config/`, `docs/`, `examples/`.
6. โ
Set up `src/` as a Python package with proper `__init__.py` files.
7. โ
Create a comprehensive `.gitignore` file for Python projects.
8. โ
Implement a `setup_environment.py` script for automated environment checks.
**Verification:** โ
Project can be installed with `pip install -e .` and the environment can be checked with `python setup_environment.py`. - **VERIFIED**
**โ
What Was Accomplished:**
- โ
Created a complete directory structure including `src/`, `tests/`, `config/`, `docs/`, and `examples/`.
- โ
Set up proper Python packaging with `__init__.py` files in all necessary directories.
- โ
Configured the virtual environment with `requirements.txt`, containing over 35 dependencies.
- โ
Implemented `setup_environment.py` script for automated environment validation.
- โ
Created a comprehensive `.gitignore` file tailored for Python projects.
- โ
Established `pyproject.toml` with project metadata and build configuration.
**๐ Files Created:**
- `src/` package structure with 8 subdirectories.
- `config/` with 5 YAML configuration files.
- `tests/` with 6 test modules.
- `examples/` with client examples and integration demos.
- Root-level configuration files (`requirements.txt`, `pyproject.toml`, `.gitignore`).
- Environment setup script `setup_environment.py`.
**๐ง Key Achievements:**
- A professional project structure following Python best practices.
- An automated environment setup script (`setup_environment.py`) to ensure consistency.
- Virtual environment isolation for robust dependency management.
- A comprehensive configuration system supporting multiple environments.
---
### โ
**Task 1.2: Basic MCP Server Implementation** *(COMPLETED)*
**Objective:** Implement core MCP protocol server with FastAPI and WebSocket support
**File(s):** `src/mcp_server/server.py`, `src/mcp_server/mcp_handler.py`
**Status:** โ
**COMPLETED** - All requirements implemented and tested
**Instructions for AI:**
1. โ
Create `MCPServer` class using FastAPI
2. โ
Implement WebSocket endpoint for MCP protocol at `/mcp`
3. โ
Add basic MCP message handling (initialize, list_tools, call_tool)
4. โ
Create health check endpoint `/health` for monitoring
5. โ
Add basic error handling and logging with structured logs
6. โ
Implement graceful shutdown with proper resource cleanup
7. โ
Add lifespan management for application startup/shutdown
8. โ
Create comprehensive test suite for MCP functionality
**Verification:** โ
Server starts and responds to MCP `initialize` and `list_tools` requests - **VERIFIED**
**โ
What Was Accomplished:**
- โ
Created FastAPI application with lifespan management for proper startup/shutdown
- โ
Implemented WebSocket endpoint at `/mcp` for MCP protocol communication
- โ
Added health check endpoint at `/health` for monitoring
- โ
Built MCPHandler class for processing MCP protocol messages
- โ
Implemented core MCP methods: initialize, list_tools, call_tool
- โ
Added proper JSON-RPC 2.0 message handling with error responses
- โ
Configured structured logging with contextual information
**๐ Files Created/Updated:**
- `src/mcp_server/server.py` - Main FastAPI server with WebSocket support
- `src/mcp_server/mcp_handler.py` - Core MCP protocol message handling
- Signal handling for graceful shutdown
- Comprehensive error handling and logging
**๐ง Key Achievements:**
- Full MCP protocol compliance with proper message format
- Asynchronous WebSocket communication for real-time data access
- Graceful startup/shutdown with resource cleanup
- Health monitoring for production deployment readiness
- Structured logging for debugging and monitoring
---
### โ
**Task 1.3: Tool Registry and Validation System** *(COMPLETED)*
**Objective:** Create robust tool management system with validation and error handling
**File(s):** `src/mcp_server/tools.py`
**Status:** โ
**COMPLETED**
**Instructions for AI:**
1. โ
Create `MCPTool` abstract base class with schema validation.
2. โ
Define `GetChampionDataTool` with its corresponding Pydantic input model for validation.
3. โ
Define `GetAbilityDetailsTool` with its Pydantic input model for validation.
4. โ
Create a `ToolRegistry` class for dynamic, programmatic loading and management of tools.
5. โ
Add comprehensive input parameter validation using Pydantic models within each tool's implementation.
6. โ
Implement robust error handling for tool execution failures.
**Verification:** โ
Core tools (`get_champion_data`, `get_ability_details`) validate inputs and return structured outputs. - **VERIFIED**
**โ
What Was Accomplished:**
- โ
Implemented a `ToolRegistry` class for centralized, programmatic tool management.
- โ
Created an `MCPTool` abstract base class to enforce a consistent structure.
- โ
Built a tool registration system where tools are defined in code, not from external configs.
- โ
Added input parameter validation using Pydantic models for type safety.
- โ
Implemented comprehensive error handling for tool execution within the `MCPHandler`.
- โ
Created tool discovery and listing functionality based on registered tool instances.
**๐ Files Created/Updated:**
- `src/mcp_server/tools.py` - Contains the complete tool registry, base classes, and concrete tool implementations (`GetChampionDataTool`, `GetAbilityDetailsTool`).
- Pydantic input models are co-located with the tools for validation.
- The `ToolRegistry` provides an async execution framework.
**๐ง Key Achievements:**
- Type-safe tool parameter validation using Pydantic.
- An extensible tool architecture that allows for easy addition of new tools in code.
- Comprehensive error handling with proper MCP error codes managed by the `MCPHandler`.
- Schema-driven tool definitions that ensure consistency.
- Automated tool discovery and registration at server startup.
---
### โ
**Task 1.4: Champion Service Implementation** *(COMPLETED)*
**Objective:** Create a comprehensive champion data service with live WikiScraper integration and intelligent mock data fallback.
**File(s):** `src/services/champion_service.py`
**Status:** โ
**COMPLETED**
**Instructions for AI:**
1. โ
Create a `ChampionService` class with Pydantic models for structured data (ChampionData, ChampionStats, etc.).
2. โ
Integrate the `WikiScraper` to fetch live champion data from the LoL Wiki.
3. โ
Implement data transformation methods (`_transform_wiki_stats`, `_transform_wiki_abilities`) to convert raw scraped data into validated Pydantic models.
4. โ
Implement intelligent fallback logic: attempt to fetch from the wiki first, and only use internal mock data if the wiki call fails or returns incomplete data.
5. โ
Add comprehensive error handling for network issues, parsing failures, and missing champions.
6. โ
Implement champion name normalization to handle inconsistencies.
7. โ
Retain mock data for "Taric" as a reliable fallback for testing and development.
8. โ
Connect the service to the MCP tool system, allowing tools to serve live data.
**Verification:** โ
MCP tool `get_champion_data` returns real, valid data for any champion (e.g., "Samira", "Akali") and falls back to mock data for "Taric" if the wiki is unavailable. - **VERIFIED**
**โ
What Was Accomplished:**
- โ
Created a `ChampionService` class that now serves as a live data provider, not just a mock service.
- โ
Fully integrated the `WikiScraper` to fetch real-time champion stats and abilities.
- โ
Implemented robust Pydantic models for type-safe data validation and serialization.
- โ
Built a data transformation layer to map raw scraped HTML into structured, clean data.
- โ
Developed an intelligent fallback system that prioritizes live data but gracefully degrades to mock data on failure.
- โ
Added comprehensive error handling and logging for a resilient service.
- โ
Kept "Taric" mock data to ensure core functionality is always testable.
**๐ Files Created/Updated:**
- `src/services/champion_service.py` - A complete, production-ready champion service that connects to live data sources.
- Pydantic models for comprehensive data validation.
- Transformation logic to process and clean external data.
- Fallback mechanisms for high reliability.
**๐ง Key Achievements:**
- Transitioned from a static mock data service to a dynamic, live data service.
- Type-safe champion data with comprehensive validation for any champion.
- Highly resilient and extensible service architecture that can incorporate more data sources in the future.
- Robust error handling and logging for production readiness.
- High test coverage ensuring reliability of both live and fallback data paths.
---
### โ
**Task 1.5: Configuration Management System** *(COMPLETED)*
**Objective:** Implement comprehensive configuration management supporting multiple environments
**File(s):** `src/core/config.py`, `config/server_config.yaml`, `config/development_config.yaml`, `config/production_config.yaml`
**Status:** โ
**COMPLETED**
**Instructions for AI:**
1. โ
Create a `Settings` class using Pydantic's `BaseSettings` with nested configuration models (`ServerConfig`, `DatabaseConfig`, etc.).
2. โ
Implement support for loading configurations from environment variables (e.g., from a `.env` file) with type validation.
3. โ
Add a sophisticated loading mechanism that reads from multiple YAML files (`server_config.yaml`, `data_sources.yaml`, and environment-specific files like `development_config.yaml`).
4. โ
Implement environment variable substitution within YAML files (e.g., `${API_KEY}` can be replaced by an environment variable).
5. โ
Create development and production environment settings with appropriate, secure defaults.
6. โ
Implement comprehensive config validation using Pydantic validators to ensure data integrity.
7. โ
Add helper methods for common configuration access patterns (e.g., `is_development()`, `get_database_url()`).
**Verification:** โ
Server correctly loads configuration from YAML files and environment variables, with environment-specific overrides working as expected. - **VERIFIED**
**โ
What Was Accomplished:**
- โ
Implemented a comprehensive `Settings` class with nested configuration sections for clarity and structure.
- โ
Added support for loading configurations from both environment variables and a hierarchy of YAML files.
- โ
Created a custom `EnvironmentLoader` to allow for dynamic environment variable substitution inside YAML files.
- โ
Built a robust system for environment-specific overrides (`development_config.yaml`, `production_config.yaml`).
- โ
Added comprehensive validation with helpful error messages using Pydantic's validation features.
- โ
Implemented fallback behavior to ensure the application can start even with missing configuration files.
**๐ Files Created/Updated:**
- `src/core/config.py` - The main configuration management system with the `Settings` class.
- `src/core/environment_loader.py` - A custom loader for YAML files with environment variable support.
- `config/development_config.yaml` - Overrides for the development environment.
- `config/production_config.yaml` - Secure overrides for the production environment.
- `tests/test_config.py` - A comprehensive test suite to ensure configuration loading is reliable.
**๐ง Key Achievements:**
- A highly flexible, multi-environment configuration system.
- Type-safe configuration management with Pydantic models.
- Secure and dynamic configuration loading from files and environment variables, preventing hardcoded secrets.
- Comprehensive test coverage ensuring the reliability of the configuration system.
- A production-ready configuration management system that is easy to extend.
---
### โ
**Task 1.6: Cursor MCP Integration** *(COMPLETED)*
**Objective:** Integrate MCP server with Cursor IDE for seamless development workflow
**File(s):** `src/mcp_server/stdio_server.py`, Cursor configuration
**Status:** โ
**COMPLETED** - Successfully integrated with Cursor IDE
**Instructions for AI:**
1. โ
Create stdio-based MCP server for Cursor integration
2. โ
Implement PowerShell-compatible server startup script
3. โ
Configure Cursor MCP settings for Turkish character path handling
4. โ
Test all 7 MCP tools (5 LoL data tools + 2 basic tools)
5. โ
Verify champion data access (Taric and Ezreal)
6. โ
Ensure proper error handling and logging
7. โ
Document configuration steps and troubleshooting
**Verification:** โ
All MCP tools accessible and functional within Cursor IDE - **VERIFIED**
**โ
What Was Accomplished:**
- โ
Created stdio_server.py for direct Cursor IDE integration
- โ
Configured PowerShell-based startup handling Turkish character paths
- โ
Successfully registered 7 MCP tools with Cursor
- โ
Verified functionality of all core tools (get_champion_data, search_champions, etc.)
- โ
Integrated comprehensive champion data (Taric and Ezreal)
- โ
Implemented proper error handling and status reporting
**๐ Files Created/Updated:**
- `src/mcp_server/stdio_server.py` - Stdio MCP server for Cursor
- Cursor MCP configuration with PowerShell support
- Integration documentation and troubleshooting guides
**๐ง Key Achievements:**
- Seamless Cursor IDE integration with 7 working MCP tools
- PowerShell-compatible configuration handling special characters
- Real-time champion data access within development environment
- Production-ready MCP server architecture
- Complete development workflow integration
---
### โ
**Task 1.7: PowerShell Unicode Path Fix** *(COMPLETED)*
**Objective:** Fix PowerShell terminal crashes caused by Turkish characters in file path
**File(s):** `CURSOR_INTEGRATION.md`, updated MCP configurations
**Status:** โ
**COMPLETED** - Fixed configurations provided and documented
**Instructions for AI:**
1. โ
Identify PowerShell Unicode handling issue with Turkish characters (`Masaรผstรผ`)
2. โ
Create Command Prompt alternative configuration for Cursor MCP
3. โ
Develop PowerShell UTF-8 encoding solution as alternative
4. โ
Update CURSOR_INTEGRATION.md with fixed configurations
5. โ
Document troubleshooting steps and user actions required
6. โ
Test configurations to ensure MCP server functionality
7. โ
Update technical documentation with complete fix details
**Verification:** โ
Fixed configurations eliminate PowerShell crashes and maintain MCP functionality - **VERIFIED**
**โ
What Was Accomplished:**
- โ
Diagnosed PowerShell PSReadLine Unicode issue with Turkish characters
- โ
Created Command Prompt (cmd) based MCP configuration as primary solution
- โ
Developed PowerShell UTF-8 encoding alternative for users preferring PowerShell
- โ
Updated CURSOR_INTEGRATION.md with comprehensive fix documentation
- โ
Provided clear user action steps for configuration updates
- โ
Maintained full MCP server functionality with all 7 tools working
- โ
Committed fix to GitHub repository with proper documentation
**๐ Files Created/Updated:**
- `CURSOR_INTEGRATION.md` - Complete fix documentation with multiple configuration options
- `docs/lol_data_mcp_server.md` - Technical documentation update with fix details
- `README.md` - Current task status update
**๐ง Key Achievements:**
- Resolved critical Unicode path issue preventing MCP server use
- Provided multiple configuration solutions for different user preferences
- Maintained backwards compatibility while fixing the core issue
- Comprehensive documentation for troubleshooting and future reference
- Successfully tested and verified fix effectiveness
---
### โ
**Task 1.8: Client Examples Review & Optimization** *(COMPLETED)*
**Objective:** Consolidate and rewrite client examples into a single, functional, and comprehensive integration demonstration.
**File(s):** `examples/project_integration.py`
**Status:** โ
**COMPLETED**
**Instructions for AI:**
1. โ
Audit all existing files in the `examples/` directory.
2. โ
Remove any broken, empty, or outdated example scripts.
3. โ
Consolidate multiple example concepts into a single, well-structured file: `examples/project_integration.py`.
4. โ
Implement a standalone demonstration script that can run independently and showcases key use cases.
5. โ
Add a mock service fallback within the script so it can run even without a live server connection.
6. โ
Create three distinct demo functions: one for ML training integration, one for comparative analysis, and one for game simulation setup.
7. โ
Ensure the script generates example output files (`taric_training_data.json`, `simulation_config.json`) to serve as clear artifacts.
**Verification:** โ
The `examples/project_integration.py` script runs successfully and demonstrates multiple real-world integration patterns. - **VERIFIED**
**โ
What Was Accomplished:**
- โ
Replaced a messy structure of outdated examples with a single, powerful demonstration script: `project_integration.py`.
- โ
Created a comprehensive example that showcases three major use cases: ML training, data analysis, and game simulation.
- โ
Implemented a graceful fallback using a mock `ChampionService` to ensure the example is always runnable.
- โ
Generated practical, structured output files (`.json`) that can be used as templates for other projects.
- โ
Provided a clear, functional example of how to integrate the `ChampionService` into a larger application.
**๐ File Changes:**
- `examples/project_integration.py`: A new, comprehensive script demonstrating multiple integration patterns.
- `examples/taric_training_data.json`: Example output for an ML training pipeline.
- `examples/simulation_config.json`: Example output for configuring a game simulation.
- Removed: All old, broken, or empty example files and subdirectories.
**๐ก Key Benefits:**
- A working, high-quality example that clearly demonstrates the value and usage of the `ChampionService`.
- Practical integration patterns that can be copied and adapted for real projects.
- A more professional and streamlined `examples` directory.
---
## Phase 2: Data Sources Integration
### Task 2.1: Implement LoL Wiki Scraper
### โ
**Task 2.1.1: Create Basic Wiki Scraper Foundation** *(COMPLETED)*
**Objective:** Set up the basic scraper infrastructure and HTTP handling
**Files:** `src/data_sources/scrapers/wiki_scraper.py`, `src/data_sources/scrapers/__init__.py`
**Status:** โ
**COMPLETED**
**Instructions:**
1. โ
Create `scrapers/` folder in `src/data_sources/`
2. โ
Create `WikiScraper` class using httpx and BeautifulSoup
3. โ
Implement basic HTTP client with user-agent headers
4. โ
Add rate limiting (1 request per second) using asyncio
5. โ
Implement basic URL handling for LoL Wiki champion pages
6. โ
Add connection timeout and retry configuration
7. โ
Create basic logging for scraper operations
**Verification:** โ
Can successfully fetch a champion page HTML (e.g., Taric) with proper rate limiting
**โ
What Was Accomplished:**
- โ
Created complete WikiScraper class with async HTTP handling
- โ
Implemented rate limiting (1 req/sec), retry logic with exponential backoff
- โ
Added comprehensive error handling (404s, timeouts, connection errors)
- โ
Built champion URL handling with special character support
- โ
Created professional user agent and proper HTTP headers
- โ
Implemented async context manager for resource management
- โ
Added comprehensive logging at all levels
- โ
Created 6 unit tests with 100% pass rate
- โ
Verified real LoL Wiki connectivity and champion page fetching
**๐ Files Created:**
- `src/data_sources/scrapers/wiki_scraper.py` - Main scraper implementation (1300+ lines)
- `src/data_sources/scrapers/__init__.py` - Package initialization
- `tests/test_wiki_scraper.py` - Comprehensive test suite
**๐ง Key Features:**
- Async HTTP client with httpx and BeautifulSoup
- Rate limiting and retry logic with exponential backoff
- Champion URL building with special character handling (Kai'Sa, Twisted Fate)
- Comprehensive error handling and logging
- Professional user agent for responsible scraping
- Connection testing and health checks
#### โ
**Task 2.1.2: Implement Champion Page Navigation** *(COMPLETED)*
**Objective:** Navigate wiki pages and identify data sections
**Files:** `src/data_sources/scrapers/wiki_scraper.py`
**Status:** โ
**COMPLETED** - December 2024
**Instructions:**
1. โ
Add `find_champion_data_sections()` method
2. โ
Implement CSS selectors for champion info tables
3. โ
Add navigation to different wiki page sections (stats, abilities)
4. โ
Create page structure validation
5. โ
Handle different wiki page layouts and formats
6. โ
Add error handling for missing sections
**Verification:** โ
Can navigate to and identify stats/abilities sections on champion pages
**โ
What Was Accomplished:**
- โ
Implemented `find_champion_data_sections()` method that identifies 3 key sections: stats, abilities, overview
- โ
Created `_find_stats_section()` with multiple fallback strategies:
- Primary: CSS selector for `infobox type-champion-stats` class
- Fallback 1: Content-based detection using stat abbreviations (HP, MP, AD, AR, MR)
- Fallback 2: Table-based detection for "base statistics" content
- โ
Implemented `_find_abilities_section()` with comprehensive navigation:
- Primary: MediaWiki headline span detection for "Abilities" sections
- Fallback 1: Header-based detection with content extraction
- Fallback 2: Class-based detection for ability-related divs
- โ
Added `_find_overview_section()` for champion description detection
- โ
Created `_validate_page_structure()` method for comprehensive validation
- โ
Implemented proper error handling and logging for missing sections
- โ
Added comprehensive type safety with BeautifulSoup Tag validation
**๐ Implementation Details:**
- **Stats Detection**: Successfully identifies champion stats infoboxes on real LoL Wiki pages
- **Abilities Detection**: Navigates MediaWiki section structure to extract abilities content
- **Multiple Fallbacks**: Robust detection even with different page layouts
- **Type Safety**: Proper isinstance() checks for BeautifulSoup elements
- **Error Handling**: Graceful degradation when sections are missing
**๐งช Testing Results:**
- โ
Successfully tested with Taric and Ezreal champion pages
- โ
Stats section: 100% detection rate with HP, AD, MP, AR, MR data
- โ
Abilities section: Working detection with content extraction
- โ
Page validation: Comprehensive validation logic implemented
- โ
Integration: Added 6 new unit tests to test suite
**๐ Files Modified:**
- `src/data_sources/scrapers/wiki_scraper.py`: Added 150+ lines of navigation methods
- `tests/test_wiki_scraper.py`: Added comprehensive test coverage for Task 2.1.2
**๐ฏ Ready for Task 2.1.3:** Champion stats table parsing implementation
#### โ
**Task 2.1.3: Parse Champion Stats Table** *(VERIFIED & FIXED)*
**Objective:** Extract numerical stats from champion info tables
**Files:** `src/data_sources/scrapers/wiki_scraper.py`
**Status:** โ
**VERIFIED & FIXED** - December 2024 (Critical bug fixed)
**Instructions:**
1. โ
Implement `parse_champion_stats()` method
2. โ
Extract base stats (HP, Mana, AD, Armor, MR, etc.)
3. โ
Parse per-level growth stats (**CRITICAL FIX APPLIED**)
4. โ
Handle different stat table formats
5. โ
Add data validation and type conversion
6. โ
Create fallback parsing for edge cases
7. โ
Add unit handling (flat vs percentage values)
**Verification:** โ
**VERIFIED WITH REAL WIKI DATA** - Tested with live Taric page, all stats extracted correctly
**๐จ CRITICAL BUG FOUND & FIXED:**
- **Problem**: Original regex pattern expected "HP: 645 (+99)" format, but real LoL wiki uses "HP645+99" format
- **Impact**: Growth values were never extracted, making level-based calculations impossible
- **Fix**: Updated `_extract_stat_value()` method with new regex patterns for real wiki format
- **Result**: All base and growth values now extracted correctly from live wiki pages
**โ
What Was Accomplished:**
- โ
**FIXED** `_extract_stat_value()` method with new regex patterns:
- **Pattern 1**: "HP645+99" (actual LoL wiki format) ๐ฅ **NEW**
- **Pattern 2**: "HP: 645 (+99)" (legacy fallback format)
- **Pattern 3**: "HP645" (no growth format)
- โ
**VERIFIED** with real Taric wiki data - all stats working:
- HP: 645 + 99 per level โ
- MP: 300 + 60 per level โ
- AD: 55 + 3.5 per level โ
- Armor: 40 + 4.3 per level โ
- MR: 28 + 2.05 per level โ
- โ
**TESTED** level calculations: Taric Level 6 HP = 1140.0 (matches user requirement)
- โ
Implemented comprehensive stat name standardization
- โ
Added full validation ranges for all champion stats
**๐ฏ Level-Based Stats Feature (User Requirement):**
- โ
**"Bring me level 6 stats for Taric"** - Working correctly!
- โ
Calculation: Base + (Growth ร (Level - 1))
- โ
Example: HP at Level 6 = 645 + (99 ร 5) = 1140.0
- โ
Supports all levels 1-18 for any champion with growth stats
**๐ฎ Successfully Parsed Stats (Real Wiki Data):**
- **HP (Health Points)**: 645 + 99 per level
- **MP (Mana Points)**: 300 + 60 per level
- **AD (Attack Damage)**: 55 + 3.5 per level
- **Armor**: 40 + 4.3 per level
- **MR (Magic Resistance)**: 28 + 2.05 per level
- **Attack Speed**: 0.625 (no growth)
- **Movement Speed**: 340 (no growth)
- **Range**: 150 (no growth)
**๐ง Technical Implementation:**
- **Multiple Regex Patterns**: 3-tier pattern matching for maximum compatibility
- **Real Wiki Format Support**: Handles "StatName[BaseValue]+[Growth]" format
- **Fallback Support**: Legacy and edge case format handling
- **Debug Logging**: Added detailed extraction logging for monitoring
- **Type Safety**: Full type hints and validation maintained
**๐งช Testing Results (Real Data):**
- โ
**Real Wiki Verification**: Successfully tested with live Taric wiki page
- โ
**Growth Value Extraction**: Fixed and working - 5/8 stats have growth values
- โ
**Level Calculations**: Verified level 1, 6, 11, 18 calculations work correctly
- โ
**Format Compatibility**: Handles real wiki format perfectly
- โ
**User Requirements**: Meets "level 6 stats" requirement completely
**๐ Files Modified:**
- `src/data_sources/scrapers/wiki_scraper.py`: **FIXED** `_extract_stat_value()` method
- Added Pattern 1: `rf'{stat_name}\s*([0-9]+\.?[0-9]*)\s*\+\s*([0-9]+\.?[0-9]*)'` for "HP645+99"
- Enhanced debug logging for successful extractions
- Improved error handling for multiple pattern attempts
**๐ฏ Ready for Task 2.1.4:** Champion abilities information parsing implementation
#### โ
**Task 2.1.4: Parse Champion Abilities Information** *(COMPLETED)*
**Objective:** Extract ability details (Q, W, E, R, Passive)
**Files:** `src/data_sources/scrapers/wiki_scraper.py`
**Status:** โ
**COMPLETED** - December 2024
**Instructions:**
1. โ
Implement `parse_champion_abilities()` method
2. โ
Extract ability names, descriptions, and cooldowns
3. โ
Parse damage values and scaling information
4. โ
Handle complex ability interactions and conditions
5. โ
Add mana/energy cost extraction
6. โ
Create ability range and effect area parsing
7. โ
Handle champion-specific ability variations
**Verification:** โ
Can extract complete ability data for Taric (all 5 abilities with details)
**โ
What Was Accomplished:**
- โ
Implemented comprehensive `parse_champion_abilities()` method with full champion ability extraction
- โ
Added 6 helper methods for robust ability parsing:
- `_extract_single_ability()` - Extract individual ability data with multiple strategies
- `_extract_ability_name()` - Extract ability names from headings and bold text
- `_clean_ability_description()` - Clean and format ability descriptions
- `_parse_ability_values()` - Parse cooldowns, costs, ranges, damage with regex
- `_extract_ability_effects()` - Extract effects lists (healing, stunning, channeling)
- `_validate_ability_data()` - Validate and clean parsed ability data
- โ
Created comprehensive ability parsing with multiple detection strategies:
- **Strategy 1**: Heading-based detection (h3 tags with ability patterns)
- **Strategy 2**: Class-based detection (divs with ability classes)
- **Strategy 3**: Content-based detection (text containing ability keywords)
- โ
Implemented robust regex patterns for parsing:
- **Cooldowns**: "Cooldown: 14/13/12/11/10" format
- **Mana Costs**: "Mana Cost: 60/70/80/90/100" format
- **Ranges**: "Range: 750" format
- **Damage**: "80/120/160/200/240 (+0.4 AP)" format with scaling
- **Healing**: "30/45/60/75/90 (+0.2 AP)" format with scaling
- โ
Added comprehensive effects detection with 15+ effect patterns:
- Combat effects (stun, slow, knockup, silence, root)
- Utility effects (heal, shield, dash, teleport, stealth)
- Enhancement effects (increase stats, reduce cooldowns)
- โ
Created structured data output supporting all ability types:
- **Passive abilities**: No cooldown/cost, damage scaling, effect descriptions
- **Active abilities (Q/W/E/R)**: Full data with cooldowns, costs, ranges, effects
- **Flexible fields**: Damage, healing, cost, range - all optional based on ability type
**๐ Implementation Details:**
- **Data Structure**: Comprehensive ability dictionary with 8 fields per ability
- **Error Handling**: Graceful degradation when sections or data missing
- **Type Safety**: Full type hints and validation throughout
- **Logging**: Debug and info level logging for monitoring parsing progress
- **Multiple Fallbacks**: 3-tier detection strategy ensures maximum compatibility
- **Content Cleaning**: Smart description extraction avoiding stat lines
**๐งช Testing Results:**
- โ
Successfully tested with mock Taric ability data
- โ
Parsed all 5 abilities: Passive (Bravado), Q (Starlight's Touch), W (Bastion), E (Dazzle), R (Cosmic Radiance)
- โ
Extracted cooldowns: Q (14/13/12/11/10), W (18/17/16/15/14), E (15/14/13/12/11), R (160/135/110)
- โ
Extracted mana costs: Q (60/70/80/90/100), W (60), E (60/65/70/75/80), R (100)
- โ
Extracted ranges: Q (750), W (800), E (575), R (400)
- โ
Extracted effects: Healing, channeling, shielding, stunning, invulnerability
**๐ง CRITICAL BUG FIXES APPLIED:**
- **CSS Selector Fix (December 2024)**: Fixed critical bug in `_extract_single_ability()` method where all abilities were returning same data
- **Root Cause**: `find('div', class_=['skill', skill_class])` was always finding first container instead of specific ability containers
- **Solution**: Changed to `find('div', class_=skill_class)` to properly match specific CSS classes (`skill_innate`, `skill_q`, `skill_w`, etc.)
- **Result**: All 5 abilities now extract correctly with proper names (Bravado, Starlight's Touch, Bastion, Dazzle, Cosmic Radiance)
- **Return Structure Fix**: Updated `parse_champion_abilities()` to return `{"abilities": {...}}` format expected by ChampionService
- **CSS-Based Approach**: Replaced brittle text patterns with robust CSS selectors as recommended by Gemini code review
- **Real Wiki Compatibility**: Confirmed working with actual LoL wiki HTML structure (`<div class="skill skill_q">`, etc.)
**โ
Verification Results (Post-Fix):**
- **Taric**: โ
5/5 abilities extracted (Passive=Bravado, Q=Starlight's Touch, W=Bastion, E=Dazzle, R=Cosmic Radiance)
- **Yasuo**: โ
5/5 abilities extracted (Passive=Way of the Wanderer, Q=Steel Tempest, W=Wind Wall, E=Sweeping Blade, R=Last Breath)
- **Real Descriptions**: โ
Actual wiki content extracted (not mock data)
- **Stats Parsing**: โ
Cooldowns and costs extracted correctly (Q cooldown: 3, cost: 60 for Taric)
**๐ Files Modified:**
- `src/data_sources/scrapers/wiki_scraper.py`: Added 350+ lines of abilities parsing logic + CRITICAL BUG FIXES
- Main method: `parse_champion_abilities()` (80 lines) + return structure fix
- Helper methods: 6 comprehensive parsing and validation methods + 2 new CSS-based extraction methods
- Regex patterns: 5 different value extraction patterns
- Effects detection: 15+ effect pattern recognition
- **NEW**: `_extract_ability_name_from_container()` - CSS-based name extraction with multiple strategies
- **NEW**: `_extract_ability_description_from_container()` - CSS-based description extraction with JSON data support
- `tests/test_wiki_scraper.py`: Added 3 new test methods for abilities parsing
**๐ฏ Ready for Task 2.1.5:** Error handling and caching implementation
#### โ
**Task 2.1.5: Implement Error Handling and Caching** *(COMPLETED)*
**Objective:** Add robust error handling and performance optimization
**Files:** `src/data_sources/scrapers/wiki_scraper.py`
**Status:** โ
**COMPLETED** - December 2024
**Instructions:**
1. โ
Implement comprehensive HTTP error handling
2. โ
Add retry logic with exponential backoff (already existed, enhanced with metrics)
3. โ
Create caching system for scraped pages (file-based)
4. โ
Add cache expiration and invalidation
5. โ
Implement graceful degradation on parsing errors
6. โ
Add detailed logging and error reporting
7. โ
Create scraping performance metrics
**Verification:** โ
Scraper handles network issues gracefully and caches data efficiently
**โ
What Was Accomplished:**
- โ
**ScrapingMetrics dataclass** - Comprehensive performance tracking (requests, cache hits/misses, successes/failures, timing, errors)
- โ
**CacheManager class** - File-based caching with MD5 hash keys, 24-hour TTL, metadata management, cleanup functionality
- โ
**Enhanced WikiScraper** - Added caching support, metrics integration, safe parsing methods
- โ
**Graceful error handling** - Safe parsing methods (`parse_champion_stats_safe`, `parse_champion_abilities_safe`) return structured error info instead of crashing
- โ
**Performance metrics** - Request timing, cache statistics, error tracking with detailed logging
- โ
**Cache management** - TTL-based expiration, metadata storage, cleanup utilities (`cleanup_cache`, `get_cache_info`)
**๐ Files Modified:**
- `src/data_sources/scrapers/wiki_scraper.py`: Added 300+ lines of caching and metrics functionality
- New imports: json, hashlib, datetime, pathlib, dataclasses
- ScrapingMetrics dataclass with field factory for error list
- CacheManager class with full file-based caching system
- Enhanced WikiScraper with caching integration and metrics tracking
- Safe parsing methods with graceful degradation
- Cache utility methods for management and information
**๐ง Key Features Added:**
- **File-based caching**: `cache/wiki_pages/` directory with HTML content and JSON metadata
- **Cache TTL**: 24-hour default expiration with configurable timeout
- **Performance tracking**: Comprehensive metrics for requests, cache performance, parsing success/failure
- **Error resilience**: Safe parsing methods that return partial data on failures
- **Cache management**: Cleanup expired entries, cache statistics, hit/miss tracking
- **Enhanced logging**: Detailed context and performance information throughout
**๐งช Testing Results:**
- โ
All new functionality verified working correctly
- โ
Caching system creates cache directory and manages files properly
- โ
Metrics accurately track all operations (cache hits/misses, parsing failures, errors)
- โ
Safe parsing methods return structured error information instead of exceptions
- โ
Cache cleanup and information methods functioning correctly
- โ
No regression in existing functionality
**๐ฏ Ready for Task 2.1.6:** WikiScraper-ChampionService Integration
#### โ
**Task 2.1.6: Connect WikiScraper to ChampionService** *(COMPLETED)*
**Objective:** Replace mock data with real WikiScraper calls and add fallback logic
**Files:** `src/services/champion_service.py`
**Status:** โ
**COMPLETED** - WikiScraper successfully integrated with intelligent fallback
**Completed Implementation:**
1. โ
**WikiScraper Integration:** Added async WikiScraper instance to ChampionService with proper initialization and cleanup
2. โ
**Smart Fallback Logic:** Implemented intelligent fallback: WikiScraper โ Mock Data (if wiki fails or data incomplete)
3. โ
**Data Transformation:** Added robust transformation layer converting WikiScraper format to ChampionService format
4. โ
**Champion Name Normalization:** Added `_normalize_champion_name()` for handling special characters and case sensitivity
5. โ
**Comprehensive Error Handling:** Network timeouts, parsing failures, missing data - all handled gracefully
6. โ
**Caching Integration:** WikiScraper's file-based caching (24-hour TTL) integrated at service level
7. โ
**Honest Data Representation:** Shows None/unavailable for missing stats instead of fake defaults (user requested)
**Technical Architecture:**
- **Modified Data Models:** Made ChampionStats and ChampionAbilities fields Optional for honest data representation
- **New Methods:** `_get_champion_from_wiki()`, `_transform_wiki_stats()`, `_transform_wiki_abilities()`, `_normalize_champion_name()`
- **Enhanced Fallback:** Three data sources tracked: `wiki`, `mock_fallback_error`, `mock_fallback_incomplete`
- **Configuration Options:** `enable_wiki=True/False` and `use_cache=True/False` for testing/production flexibility
- **Resource Management:** Proper async cleanup of WikiScraper HTTP clients via `cleanup()` method
**Data Source Intelligence:**
- **Priority:** WikiScraper โ Mock Data (fallback)
- **Fallback Triggers:** Network errors, champion not found, incomplete data (no stats/abilities)
- **Data Source Tracking:** Response includes `data_source` field indicating which source provided data
- **Graceful Degradation:** Service always returns data, preferring real wiki data when available
**Testing Coverage:**
- โ
**17 tests passing** including WikiScraper integration tests
- โ
**Mock data tests** (WikiScraper disabled for fast testing)
- โ
**Real wiki integration test** with proper error handling
- โ
**Fallback logic verification** with network simulation
- โ
**Data transformation testing** for stats and abilities
**Performance & Reliability:**
- **First Request:** ~2-3 seconds (network + parsing)
- **Cached Requests:** <100ms (file cache hit)
- **Fallback Time:** <500ms (immediate mock data)
- **Success Rate:** 100% (always returns data via fallback)
**User Experience:**
- **Real Champion Data:** Any champion from LoL Wiki (Samira, Akali, Yasuo, etc.)
- **Honest Representation:** Shows None for unavailable data instead of fake values
- **Reliable Service:** Never fails - always provides data via intelligent fallback
- **Fast Performance:** Caching ensures quick subsequent requests
**Verification Results:** โ
ChampionService successfully returns real wiki data for any champion (Samira, Akali, etc.) with proper fallback to mock data when needed
#### โ
**Task 2.1.7: Integrate WikiScraper with MCP Tools** *(COMPLETED)*
**Objective:** Update MCP tools to use real wiki data through enhanced ChampionService
**Files:** `src/mcp_server/tools.py`, `tests/test_tools.py`
**Status:** โ
**COMPLETED** - All MCP tools now use WikiScraper with real data
**Implementation:**
1. โ
Updated `GetChampionDataTool` - Already using WikiScraper-enabled ChampionService
2. โ
Updated `GetAbilityDetailsTool` - Replaced 80+ lines of hardcoded data with WikiScraper integration
3. โ
Added proper error handling for wiki scraping failures with graceful fallback to mock data
4. โ
Implemented champion existence validation (built into ChampionService)
5. โ
Added performance monitoring via WikiScraper caching and rate limiting
6. โ
Tested MCP tools with real champion names (Taric working, Samira properly handled)
7. โ
Enhanced MCP error responses with specific ChampionNotFoundError for invalid champions
**Achieved Benefits:**
- **All MCP tools** work with real LoL Wiki data with intelligent fallback
- **Any champion** accessible via MCP (not limited to Taric/Ezreal hardcoded data)
- **Real-time abilities** from official wiki with complete fallback system
- **Improved error handling** with specific error messages for invalid champions
- **Performance optimized** with built-in caching and rate limiting
- **All ability types** working (passive, Q, W, E, R)
**Verification Results:** โ
All 15 tests pass, all ability types work, WikiScraper integration functional with proper fallback
#### โ
**Task 2.1.8: Implement Per-Level Stat Scraping** *(COMPLETED)*
**Objective:** Fix incorrect stat calculations by scraping the complete per-level stats table directly from the wiki using level dropdown interaction.
**Files:** `src/data_sources/scrapers/stats_scraper.py`, `src/services/stats_service.py`, `tests/test_stats_service.py`
**Status:** โ
**COMPLETED** - Per-level stat scraping with Selenium dropdown interaction + comprehensive tests
**โ
Implementation:**
1. **โ
Complete StatsScraper:** Full implementation with Selenium level dropdown interaction
- **Selenium Integration:** Uses `_create_selenium_driver()` from BaseScraper
- **Level Dropdown:** Interacts with `#lvl_` selector to select specific levels (1-18)
- **CSS Selectors:** ALL selectors from wiki_selectors.md implemented (15 total stats):
- **Core Stats**: HP, Mana, AD, Armor, MR, AS, Movement Speed, Attack Range
- **Advanced Stats**: Critical Damage, Base Attack Speed, Windup%, AS Ratio, HP/Mana Regen
- **Timing Fix:** Proper `time.sleep(1.0)` wait for JavaScript stats update
- **Error Handling:** Graceful handling of missing stats and Selenium failures
2. **โ
Enhanced StatsService:** Simplified service layer for level-specific stats
- **Level-Specific Method:** `get_champion_stats(champion, level)` uses Selenium scraping
- **Base Stats Fallback:** When no level specified, defaults to level 1 for consistency
- **Data Source Tracking:** Returns `selenium_level_scrape` or `selenium_base_stats`
- **Champion Name Normalization:** Handles special characters and spacing
3. **โ
MCP Tool Integration:** Existing `GetChampionStatsTool` already supports level parameter
- **Optional Level:** Tool accepts `level` parameter (1-18) for accurate stats
- **Service Integration:** Uses StatsService with dependency injection
- **Error Responses:** Proper ChampionNotFoundError handling
4. **โ
Comprehensive Test Suite:** Complete test coverage for Task 2.1.8 implementation
- **StatsService Tests:** Initialization, champion name normalization, level-specific scraping
- **StatsScraper Tests:** CSS selectors validation, stat parsing, error handling
- **Integration Tests:** End-to-end flow from service to scraper (mocked)
- **Test Coverage:** 11/11 tests passing with proper mocking for non-Selenium parts
**โ
Key Benefits:**
- **100% Accurate Stats:** Scrapes actual displayed values instead of using formulas
- **Level Dropdown Interaction:** Selenium automation of wiki level selection
- **Fixes Stat Calculation Bug:** No more formula errors (Taric Level 13 HP = 1730 โ
)
- **Simple & Clean Code:** Reduced from complex 350+ lines to focused 200 lines
- **Real Wiki Data:** Uses live data from LoL Wiki with proper caching
**โ
Technical Implementation:**
- **Selenium WebDriver:** Chrome headless browser with proper driver management
- **CSS Selectors:** All selectors from wiki_selectors.md for maximum accuracy
- **JavaScript Wait:** Proper timing for wiki page stats updates
- **Resource Management:** Proper driver cleanup and session management
- **Caching Integration:** Inherits BaseScraper's 24-hour cache system
**Verification:** โ
The `get_champion_stats` tool with level parameter returns correct stat values matching in-game data for any champion at any level (1-18)
#### โ
**Task 2.1.9: Enhanced Champion Basic Stats** *(COMPLETED)*
**Objective:** Extend champion stats to include detailed unit information and enhanced metrics for simulations
**Files:** `src/data_sources/scrapers/stats_scraper.py`
**Status:** โ
**COMPLETED** - Unit radius data successfully extracted and integrated
**โ
Implementation:**
1. **โ
Fixed Unit Radius Extraction:** Corrected CSS selectors and extraction logic
- **Root Cause Identified:** Original CSS selectors were invalid - unit radius data is concatenated with labels in text
- **HTML Structure Discovery:** Values appear as "Gameplay radius65", "Select. radius110" in page text
- **Regex Pattern Solution:** Implemented pattern matching using `rf'{re.escape(label_text)}\s*(\d+)'` to extract values
- **Updated UNIT_RADIUS_LABELS:** Replaced complex CSS selectors with simple label mapping
2. **โ
Enhanced StatsScraper:** Added working unit radius extraction to `_extract_unit_radius_data()` method
- **Text-Based Extraction:** Searches page text for patterns like "Gameplay radius65"
- **Robust Pattern Matching:** Uses regex to extract numeric values after radius labels
- **Proper Integration:** Unit radius data included in `scrape_default_stat_ranges()` for base stats only
- **Conditional Inclusion:** Only adds radius data when values exist (no N/A handling needed)
3. **โ
Base Stats vs Level Stats Differentiation:** Correctly implemented requirements
- **Base Stats (No Level):** Includes unit radius data (`wiki_default_ranges` source)
- **Level-Specific Stats:** Excludes unit radius data (`selenium_level_scrape` source)
- **Service Integration:** Works seamlessly with existing StatsService architecture
4. **โ
Data Source Integration:** Full integration with MCP tools
- **MCP Tool Support:** `get_champion_stats` tool now returns unit radius data for base stats
- **No Breaking Changes:** Existing functionality preserved, only enhanced
- **Caching Support:** Uses existing BaseScraper caching for performance
**โ
Verification Results:**
- **โ
Taric Base Stats:** Gameplay Radius (65), Selection Radius (135), Pathing Radius (35), Acquisition Radius (350)
- **โ
Sona Base Stats:** Gameplay Radius (65), Selection Radius (110), Pathing Radius (35), Acquisition Radius (800)
- **โ
Level-Specific Exclusion:** Taric Level 10 stats exclude unit radius data as required
- **โ
Real Wiki Data:** Values match actual LoL Wiki displayed data perfectly
- **โ
MCP Integration:** All unit radius data accessible via MCP tools
**โ
Technical Achievement:**
- **Fixed Critical Bug:** CSS selectors were completely wrong for this data type
- **Innovative Solution:** Text pattern matching proved more reliable than complex CSS selectors
- **Zero Regressions:** No impact on existing champion stats functionality
- **Performance Optimized:** Uses existing HTTP-based scraping (no additional Selenium needed)
**โ
Key Benefits Delivered:**
- **Complete unit information** for simulation environments and AI positioning
- **Collision detection data** for advanced gameplay algorithms
- **Enhanced simulation support** with accurate unit dimensions
- **Clean data model** - only shows data that exists, no empty fields
**Verification:** โ
Returns enhanced champion stats including unit radius data for base stats, excluded for level-specific stats, with values matching official LoL Wiki data
---
#### โ
**Task 2.1.10: Comprehensive Ability Detail System** *(COMPLETED)*
**Objective:** Implement detailed ability information scraping using ability containers and CSS selectors
**Files:** `src/data_sources/scrapers/abilities_scraper.py`, `src/services/abilities_service.py`, `src/models/data_models.py`
**Status:** โ
**COMPLETED** - Complete ability details with all game mechanics (December 2024)
**โ
Implementation:**
1. **โ
AbilitiesScraper:** Complete scraper class inheriting from `BaseScraper` for ability-specific scraping
- **CSS Selectors Implemented:** All ability containers from wiki_selectors.md:
- **Passive Container**: `.skill_innate` - Main div for passive ability โ
- **Q Ability Container**: `.skill_q` - Main div for Q ability โ
- **W Ability Container**: `.skill_w` - Main div for W ability โ
- **E Ability Container**: `.skill_e` - Main div for E ability โ
- **R Ability Container**: `.skill_r` - Main div for R ability โ
2. **โ
Ability Details Extraction:** Within each container, extracts:
- **Description**: `.ability-info-description` - Ability description text โ
- **Stats List**: `.ability-info-stats__list` - Cost, cooldown, cast time, etc. โ
3. **โ
AbilitiesService:** Complete service layer for ability operations
- **Data Transformation:** AbilitiesScraper data to model format โ
- **Validation & Fallback:** Ability validation and fallback logic โ
- **MCP Integration:** Clean interface for MCP tools โ
4. **โ
Enhanced Data Models:** Comprehensive ability data structure in `data_models.py`
- **ChampionAbility Model:** `name`, `description`, `cooldown`, `cost`, `cast_time`, `range` โ
- **All Ability Types:** Support for all ability types (Passive, Q, W, E, R) โ
5. **โ
Ability Mechanics Parsing:** Extracts detailed stats from ability containers
- **Resource Costs:** Mana consumption vs fury generation โ
- **Damage Values:** Scaling information (AP/AD ratios) โ
- **Timing & Range:** Cast times, channel times, and ranges โ
**โ
Technical Architecture:**
- **Modular Design:** abilities_scraper + abilities_service architecture โ
- **Consistent Pattern:** Following stats implementation pattern โ
- **CSS Selector-Based:** Reliable data parsing using official selectors โ
- **Dual-Form Support:** Handles complex champions (Nidalee, Jayce, etc.) โ
- **Special Cases:** Handles unique champions (Aphelios weapon system) โ
**โ
MCP Integration:**
- **get_champion_abilities Tool:** Returns comprehensive ability data for all 5 abilities โ
- **Ability-Specific Queries:** Supports ability_slot parameter for individual abilities โ
- **Real Wiki Data:** Uses live data from LoL Wiki with "wiki_abilities_scrape" source โ
**โ
Verification Results:**
- **โ
Taric:** All 5 abilities (Passive=Bravado, Q=Touch, W=Bastion, E=Dazzle, R=Cosmic Radiance)
- **โ
Ezreal:** All 5 abilities with detailed mechanics (Q=Mystic Shot, W=Essence Flux, E=Arcane Shift, R=Trueshot Barrage)
- **โ
Yasuo:** All 5 abilities with complex mechanics (Passive=Way of the Wanderer, Q=Steel Tempest, W=Wind Wall, E=Sweeping Blade, R=Last Breath)
- **โ
Jinx:** All 5 abilities with toggle mechanics (Q=Switcheroo!) and complex damage calculations
- **โ
Samira:** All 5 abilities including complex ultimate mechanics (R=Inferno Trigger)
**โ
Key Benefits Delivered:**
- **Complete ability mechanics** for AI decision making and training โ
- **Comprehensive data** including damage values, cooldowns, costs, ranges, cast times โ
- **Multi-champion support** with consistent data format across all champions โ
- **Real-time data** from official LoL Wiki with intelligent caching โ
- **Production-ready** MCP tool integration with full error handling โ
**Verification:** โ
AbilitiesService returns comprehensive ability data for all 5 abilities (Passive, Q, W, E, R) for any champion with detailed mechanics, costs, and descriptions
#### โ
**Task 2.1.11: Enhanced get_ability_details MCP Tool with Details Tab** *(COMPLETED)*
**Objective:** Add ability details MCP tool with "Details" tab content extraction using Selenium
**Files:** `src/mcp_server/tools.py`, integration with `AbilitiesService`
**Status:** โ
**COMPLETED** - MCP tool for ability information with Details tab (December 2024)
**โ
Implementation:**
1. **โ
Enhanced AbilitiesScraper:** Added Details tab interaction with Selenium
- **Details Tab Clicking**: Implemented `scrape_ability_details_with_tab()` method
- **CSS Selectors**: Uses `div.tabbertab[data-title="Details "]` (with trailing space)
- **JavaScript Navigation**: DOM traversal with `nextElementSibling` for Details tabs
- **Robust Error Handling**: Fallback to basic ability data when Details unavailable
2. **โ
Enhanced AbilitiesService:** Updated to use enhanced details when ability_slot provided
- **Conditional Enhancement**: Enhanced details only when specific ability requested
- **Data Integration**: Enhanced details appended after existing ability description
- **Service Architecture**: Uses existing AbilitiesService with no breaking changes
3. **โ
Enhanced Details Structure:** Comprehensive ability mechanics extraction:
- **Targeting Input**: "Direction", "Passive", "Auto" - how the ability is used
- **Damage Classification**: Type ("Area damage", "Proc damage") and Sub-type ("Magic", "Physical")
- **Counters**: Spell shield, projectile, parries interaction information
- **Additional Notes**: Detailed mechanics and special interactions
4. **โ
MCP Tool Integration:** GetAbilityDetailsTool already supports enhanced details
- **Ability Slot Parameter**: Optional parameter for specific ability enhancement
- **Enhanced Response**: Includes enhanced_details section when ability_slot provided
- **Backward Compatibility**: No breaking changes to existing API
**โ
Verification Results:**
- **โ
Taric E (Dazzle)**: targeting_input: "Direction", damage_classification: {type: "Area damage", sub_type: "Magic"}, counters: {projectile: "Not Blocked", spell_shield: "Blocked"}
- **โ
Taric Passive (Bravado)**: targeting_input: "Passive", damage_classification: {type: "Proc damage", sub_type: "Magic"}, counters: {parries: "See Notes"}
- **โ
Taric Q (Touch)**: targeting_input: "Auto", additional_notes with healing mechanics
- **โ
Generic Implementation**: Works for any champion, not hardcoded
- **โ
Error Handling**: Graceful fallback when Details tab unavailable
**โ
Enhanced Details Format:**
```json
{
"enhanced_details": {
"targeting_input": "Direction/Passive/Auto",
"damage_classification": {
"type": "Area damage/Proc damage",
"sub_type": "Magic/Physical"
},
"counters": {
"spell_shield": "Blocked/Not Blocked",
"projectile": "Blocked/Not Blocked",
"parries": "See Notes"
},
"additional_notes": ["List of detailed mechanics"]
}
}
```
**๐ง Technical Achievements:**
- **Selenium Details Tab Interaction**: Automated tab clicking and content extraction
- **CSS Selector Debugging**: Fixed `div.tabbertab[data-title="Details "]` (trailing space important)
- **JavaScript DOM Navigation**: Reliable Details tab location using nextElementSibling
- **Robust Implementation**: Works across all champions with proper error handling
- **Enhanced MCP Tool**: Complete ability details with targeting, damage, and counter information
#### โ
**Task 2.1.12: Patch History Analysis Tool** *(COMPLETED)*
**Objective:** Create new MCP tool to retrieve champion patch history from LoL Wiki
**Files:** `src/data_sources/scrapers/patch_note_scraper.py`, `src/services/patch_note_service.py`, `src/mcp_server/tools.py`
**Status:** โ
**COMPLETED** - December 2024
**Implementation Details:**
- **GetChampionPatchNoteTool**: New MCP tool for comprehensive patch history access
- **PatchNoteScraper**: Inherits from BaseScraper with DOM navigation for patch extraction
- **PatchNoteService**: Service layer for patch data management and caching
- **CSS Selectors**: Uses `dt` elements for patch versions, `ul` siblings for changes
- **Version Handling**: Supports both "4.12" and "V4.12" input formats
- **Dynamic Champion Support**: Works with any champion without hardcoding
**Technical Implementation:**
```python
# MCP Tool Usage Examples
get_champion_patch_note(champion_name="Taric") # Returns all patches
get_champion_patch_note(champion_name="Taric", patch_version="V14.21") # Specific patch
```
**Verification Results:**
- โ
**32 patches retrieved** for Taric (V14.21 to V3.03)
- โ
**Specific patch queries** working correctly
- โ
**Non-existent patch handling** with appropriate messages
- โ
**MCP tool integration** fully functional
- โ
**Real HTML structure adaptation** from actual Wiki pages
**Files Created:**
- `src/data_sources/scrapers/patch_note_scraper.py` (247 lines)
- Enhanced `src/services/patch_note_service.py` (251 lines)
- Enhanced `src/mcp_server/tools.py` with GetChampionPatchNoteTool
**Technical Achievements:**
- **Advanced DOM Navigation**: Uses BeautifulSoup sibling traversal for multi-section patch data
- **Version Format Flexibility**: Handles both user-friendly and internal version formats
- **Complete Integration**: Full pipeline from scraper through service to MCP tool
- **Robust Error Handling**: Graceful fallbacks with meaningful user feedback
**Expected Benefits:**
- **Comprehensive Patch History**: Access to complete champion change history
- **Meta Analysis Support**: Historical balance data for trend analysis
- **Training Data Enhancement**: Patch context for time-aware AI training
- **User-Friendly API**: Clean MCP interface for external applications
---
### โ
**Task 2.2 - Comprehensive Item Data System** *(COMPLETED)*
**Overview:** Implement comprehensive item data system with differentiated data collection for completed items vs basic/epic items, assuming perfect item names initially.
**๐ฏ Core Approach:**
1. **Perfect Name Assumption**: Initially assume users provide exact item names (e.g., "Echoes of Helia", "Kindlegem")
2. **Differentiated Extraction**: Extract different data sets based on item type (completed vs basic/epic items) with dynamic section detection
**๐ง Architecture Requirements (Following Champion Pattern):**
- **Service Layer Pattern**: Business logic services that orchestrate scrapers (like stats_service.py)
- **Dynamic Section Detection**: Find sections by scanning page structure (like `_find_stats_section()`)
- **Item Type Classification**: Distinguish completed/basic/epic items (like `_detect_dual_form_http_fast()`)
- **Selenium Integration**: Handle expandable sections like cost analysis (like level dropdown interaction)
- **Two MCP Tools**: `get_item_stats` and `get_item_patch_note` (split from original single tool)
**๐ซ No Hardcoding Rule:** All section titles, headers, and content discovered dynamically from page structure (means dynamic section detection, not avoiding CSS selectors entirely)
**๐ Item Type Differentiated Data Extraction:**
#### **Completed Items Data Requirements:**
Based on screenshot examples (Echoes of Helia, etc.):
- **Sidebar Info** (excluding recipe section)
- **Recipe** section with components and build path
- **Cost Analysis** (click expand button to show efficiency calculations)
- **Notes** section with gameplay tips and usage information
- **Map-Specific Differences** if they exist
- **Similar Items** section for alternative choices
- **Patch History** comprehensive change history
#### **Basic/Epic Items Data Requirements:**
Based on screenshot examples (Kindlegem, etc.):
- **Sidebar Info** (excluding recipe and builds info sections)
- **Recipe** section showing what it builds from
- **Builds Info** section showing what items it builds into
- **Cost Analysis** (click expand button to show efficiency calculations)
- **Similar Items** section for alternatives at same tier
- **Old Icons** section if available (historical versions)
- **Patch History** comprehensive change history
**๐ Sub-Tasks Breakdown:**
#### โ
**Task 2.2.1 - Individual Item Data Scraper** **REDESIGNED & COMPLETED**
**Objective:** Create simplified item data scraper with clean output and perfect name assumptions
**File(s):** `src/data_sources/scrapers/items/item_data_scraper.py` โ
**REDESIGNED**
**Status:** โ
**REDESIGNED & COMPLETED** - Dramatically simplified with 65% code reduction and clean JSON output
**Requirements (Differentiated Data Extraction):**
1. **Base Scraper Inheritance**: Inherit from `BaseScraper` (like stats_scraper.py)
2. **Item Type Detection**: `_classify_item_type_from_page()` method to detect completed vs basic/epic
3. **Dynamic Section Detection**: Scan page structure for sections without hardcoding section names
4. **Differentiated Data Extraction**: Extract appropriate data sets based on item type
5. **Selenium Integration**: Handle expandable cost analysis sections (click to expand)
6. **Sidebar Stats Parsing**: Extract item statistics from sidebar infoboxes
**Data Extraction Specifications:**
- **Completed Items**: sidebar info (no recipe), recipe, cost analysis (expand), notes, map differences, similar items
- **Basic/Epic Items**: sidebar info (no recipe/builds), recipe, builds info, cost analysis (expand), similar items, old icons
**Implementation Approach (Following Champion Pattern):**
- Create new `item_stats_scraper.py` following champion scraper patterns
- Dynamic section detection methods like `_find_section_by_content_scan()`
- Item type classification from page structure analysis
- Selenium WebDriver integration for expandable sections
- Perfect item name assumption for URL generation
**โ
REDESIGN Implementation Summary (December 2024):**
- **Dramatically Simplified Architecture**: Reduced from 2268 lines to 782 lines (65% reduction)
- **Simple Item Type Detection**: 3 reliable strategies instead of complex 5-strategy approach:
- Main text analysis ("legendary item in", "basic item in", "epic item in")
- wgCategories script parsing (most reliable)
- Category links validation (fallback)
- **Clean JSON Output**: No raw text/base_value format - structured data like champions
- **Perfect Name Assumptions**: Direct URL building with intelligent normalization
- **Champion Pattern Consistency**: Follows established champion scraper architecture
- **Minimal Selenium Integration**: Only for truly expandable cost analysis sections
- **Maintained Differentiated Extraction**:
- Completed items: stats, recipe, cost_analysis, notes, similar_items
- Basic/Epic items: stats, recipe, builds_info, cost_analysis, similar_items
**โ
Key Achievements:**
- **URL Normalization Fixed**: "Echoes of Helia" โ "Echoes_of_Helia" (handles small words correctly)
- **Type Detection Verified**: Correctly identifies legendary, epic, and basic items
- **Integration Maintained**: Full compatibility with existing ItemService and MCP tools
- **Clean Data Format**: Returns `{"name": "ability_power", "value": 35}` instead of raw text
- **Gemini CLI Validation**: Confirmed "clear success" with "robust, well-designed" architecture
**โ
Files Modified:**
- `src/data_sources/scrapers/items/item_data_scraper.py` (complete rewrite: 782 lines)
**โ
Verification Results:**
- **Echoes of Helia**: โ
Detected as "completed" (legendary item)
- **Kindlegem**: โ
Detected as "epic" item
- **Long Sword**: โ
Detected as "basic" item
- **ItemService Integration**: โ
No breaking changes, full compatibility maintained
- **MCP Tools**: โ
GetItemDataTool and GetItemPatchNoteTool working seamlessly
#### **Task โ
2.2.2 - Item Patch History Scraper**
**Objective:** Create item patch history scraper following champion patch_note_scraper.py pattern
**File(s):** `src/data_sources/scrapers/items/item_patch_scraper.py` โ
**COMPLETED**
**Status:** โ
**COMPLETED** - Item patch history scraper implemented with champion pattern consistency
**Requirements (Following Patch Note Scraper Pattern):**
1. **Base Scraper Inheritance**: Inherit from `BaseScraper` (like patch_note_scraper.py)
2. **Dynamic Patch Section Detection**: `_find_patch_history_section()` method (like `_find_stats_section()`)
3. **Version Parsing**: Extract patch versions and changes (like `_is_valid_patch_version()`)
4. **Change Classification**: Buffs, nerfs, reworks (like patch change parsing)
5. **Item-Specific Navigation**: Handle item page structure vs champion pages
**Implementation Approach (Following Champion Pattern):**
- Use champion patch scraper pattern with item page adaptations
- Dynamic patch history section discovery from page headers
- Version validation and change extraction
- Support both completed and basic/epic items
- Comprehensive patch data extraction
**Dependencies:** BaseScraper, champion patch scraper pattern
**Deliverables:** โ
**COMPLETED**
- โ
ItemPatchScraper class following exact champion pattern
- โ
Dynamic patch history section detection without hardcoding
- โ
Proper handling of nested UL HTML structure (item-specific)
- โ
Version parsing and validation for V14.19 and 14.19 formats
- โ
Change extraction from `<dl><dt>` and `<ul>` HTML structure
- โ
ItemPatchService following champion service pattern
- โ
GetItemPatchNoteTool MCP tool with direct service injection
- โ
Comprehensive test suite with 16/16 tests passing
- โ
Clean architecture with single responsibility principle
- Dynamic patch history extraction
- Version tracking and change classification
#### โ
**Task 2.2.3 - Item Services & MCP Tools Integration** *(COMPLETED)*
**Objective:** Create item services and MCP tools following champion service and tool patterns
**File(s):** `src/services/items/item_service.py` **(COMPLETED)**, `src/mcp_server/tools.py` (update)
**Status:** โ
**COMPLETED**
**Requirements (Following Champion Service & MCP Tool Pattern):**
1. **ItemService**: Unified service combining stats and patch functionality (like ChampionService)
2. **Perfect Name Processing**: Direct item name to data extraction (no fuzzy matching initially)
3. **Two MCP Tools**: `get_item_data` and `get_item_patch_note` (split tools)
4. **Service Orchestration**: Coordinate scraper calls with error handling
5. **Error Handling**: `ItemNotFoundError` for invalid item names
**Service Methods:**
- `get_item_data(item_name, sections=None)` - Direct item stats retrieval
- `get_item_patch_history(item_name, patch_version=None)` - Direct patch history
- `_normalize_item_name(item_name)` - Name normalization for URL generation
- `_extract_item_data(item_name)` - Data extraction coordination
**MCP Tool Specifications:**
```python
# Tool 1: Item datas
get_item_data(item_name: str, sections: List[str] = None)
# Assumes perfect names: "Echoes of Helia", "Kindlegem"
# Returns: Differentiated data based on item type (completed vs basic/epic)
# Tool 2: Item Patch History
get_item_patch_note(item_name: str, patch_version: str = None)
# Assumes perfect names with patch history extraction
# Returns: Complete patch history for item
```
**Dependencies:** Tasks 2.2.1, 2.2.2 (both scrapers)
**Deliverables:**
- ItemService with direct processing
- GetItemStatsTool and GetItemPatchNoteTool MCP tools
- Complete integration following champion architecture
---
**๐ฏ Direct Data Flow Example:**
```
User: get_item_stats("Echoes of Helia", sections=["stats", "recipe"])
โโโ ItemService direct processing
โ โโโ Normalize name: "Echoes of Helia" โ URL generation
โ โโโ Generate URL: https://wiki.leagueoflegends.com/en-us/Echoes_of_Helia
โโโ ItemStatsScraper differentiated extraction
โ โโโ Detect item type: "completed item" from page structure
โ โโโ Extract sidebar stats (excluding recipe section)
โ โโโ Extract recipe section (components + build path)
โ โโโ Skip builds info (completed items don't have this)
โ โโโ Return formatted response with differentiated data
```
**๐ Task 2.2 Summary:**
- **Total Tasks:** 3 focused tasks with differentiated extraction
- **Architecture:** Direct Processing + Champion Pattern (no fuzzy matching initially)
- **Key Innovation:** Item type-specific data extraction with perfect names
- **Technical Focus:** Dynamic section detection + Selenium expansion + Differentiated extraction
- **Primary Deliverables:** Two MCP tools with direct name processing
**๐ฏ Implementation Priority Order:**
1. **2.2.1 (Stats Scraper)** โ **2.2.2 (Patch Scraper)** โ **2.2.3 (Services & MCP)**
**๐ซ Critical "No Hardcoding" Examples (Dynamic Section Detection):**
- โ **Wrong**: `soup.find("h2", text="Recipe")`
- โ
**Correct**: `self._find_section_by_header_scan(["recipe", "components", "build"])`
- โ **Wrong**: `soup.select(".cost-analysis-section")`
- โ
**Correct**: `self._detect_expandable_sections()` + click to expand
- โ **Wrong**: `{"attack_damage": 50, "health": 300}`
- โ
**Correct**: `self._parse_stat_fields_dynamically()` from sidebar
- โ **Wrong**: `if item_name == "Moonstone Renewer":`
- โ
**Correct**: `item_type = self._classify_item_type_from_page(soup)`
---
### โ
**Task 2.3: Runes Data from LoL Wiki** *(COMPLETED)*
**Objective:** Implement rune system data extraction from LoL Wiki
**Files:** `src/data_sources/scrapers/runes/`, `src/services/runes/`, `src/mcp_server/tools.py`
**Status:** โ
**COMPLETED** - Complete runes system with scrapers, services, and MCP tools
**โ
Implementation Details:**
- **RuneDataScraper**: Extracts sidebar (Path, Slot, Description, Range), Notes, and Strategy sections
- **RunePatchScraper**: Extracts complete patch history for runes
- **RuneService**: Service layer orchestrating rune data operations
- **RunePatchService**: Service layer for rune patch history management
- **2 New MCP Tools**: `get_rune_data` and `get_rune_patch_note`
- **Perfect Name Support**: Direct rune name processing (e.g., "Summon Aery")
- **Complete Integration**: Follows champion/item architecture patterns exactly
**โ
Key Features Delivered:**
- **Sidebar Information**: Path (Sorcery/Precision/etc), Slot (Keystone/Artifact/etc), descriptions, range data
- **Notes Section**: Gameplay mechanics, interactions, and special behaviors
- **Strategy Section**: Usage tips, champion synergies, and strategic advice
- **Patch History**: Complete historical balance changes with version tracking
- **Error Handling**: RuneNotFoundError, graceful fallbacks, mock data support
- **Caching & Performance**: 24-hour TTL, rate limiting, async operations
**โ
Production Ready:**
- **MCP Compliance**: Full protocol compliance with proper schemas
- **Type Safety**: Complete type hints and Pydantic validation
- **Testing**: Comprehensive test suite covering all components
- **Documentation**: Complete integration with existing architecture
- **Resource Management**: Proper async cleanup and connection handling
**โ
Files Created:**
- `src/data_sources/scrapers/runes/rune_data_scraper.py` (370+ lines)
- `src/data_sources/scrapers/runes/rune_patch_scraper.py` (360+ lines)
- `src/services/runes/rune_service.py` (200+ lines)
- `src/services/runes/rune_patch_service.py` (180+ lines)
- `tests/test_rune_system.py` (280+ lines comprehensive test suite)
- Updated `src/models/exceptions.py` (added RuneNotFoundError)
- Updated `src/mcp_server/tools.py` (added 2 new MCP tools)
---
## Phase 3: Advanced Features & User Tools
### **Task 3.1: Player Search and Analytics**
**Objective:** Implement player lookup and performance analysis
**Status:** ๐ **PENDING** - Player data and analytics
**Purpose:**
- **For taric_ai_agent**: High-ELO player data for imitation learning
- **For general users**: Player statistics and performance tracking
**Core Ideas:**
- Player search by name, region, rank
- Match history with detailed stats
- Performance analytics (KDA, win rates, champion mastery)
- Rank tracking and LP progression
- Champion-specific performance metrics
### **Task 3.2: Build and Skill Order Recommendations**
**Objective:** Provide intelligent build and skill recommendations
**Status:** ๐ **PENDING** - AI-driven recommendations
**Purpose:**
- **For taric_ai_agent**: Static build and skill order data for AI training
- **For general users**: Meta build analysis and recommendations
**Core Ideas:**
- Meta build analysis from high-ELO players
- Situational builds based on team composition
- Skill order optimization for different scenarios
- Counter-build suggestions against specific champions
- Pro player build tracking and analysis
### **Task 3.3: Match Analysis Tools**
**Objective:** Deep match analysis and insights
**Status:** ๐ **PENDING** - Match breakdown tools
**Purpose:**
- **For taric_ai_agent**: Training data from real match scenarios
- **For general users**: Educational match analysis and insights
**Core Ideas:**
- Timeline analysis with key moments
- Damage analysis (dealt, taken, healing)
- Objective control and ward analysis
- Team fight breakdown and positioning
- Win condition analysis and patterns
---
## Phase 4: Training Data & AI Support
### **Task 4.1: Training Data Generation**
**Objective:** Generate training datasets for AI projects
**Status:** ๐ **PENDING** - AI training pipeline
**Purpose:**
- **For taric_ai_agent**: RL training data and imitation learning datasets
- **For general users**: Access to processed gameplay data
**Core Ideas:**
- State-action pairs for reinforcement learning
- High-ELO demonstration data extraction
- Scenario-specific training data generation
- Reward calculation systems for AI feedback
- Data validation and quality assurance
### **Task 4.2: Simulation Environment Support**
**Objective:** Provide data backbone for lol_sim_env
**Status:** ๐ **PENDING** - Simulation data pipeline
**Purpose:**
- **For lol_sim_env**: Complete game rules and mechanics data
- **For taric_ai_agent**: Accurate simulation environment for training
**Core Ideas:**
- Game mechanics formulas and calculations
- Champion ability interactions and combos
- Map data with terrain and objectives
- Economic systems (gold generation, spending)
- Balance data for accurate simulation
---
## Phase 5: Performance & Scalability
### **Task 5.1: Caching and Performance**
**Objective:** Implement high-performance data access
**Status:** ๐ **PENDING** - Performance optimization
**Core Ideas:**
- Redis caching layer for frequently accessed data
- Multi-level caching strategy
- Cache invalidation on data updates
- Performance metrics and monitoring
- Response time optimization
### **Task 5.2: Database and Storage**
**Objective:** Persistent storage for large datasets
**Status:** ๐ **PENDING** - Data persistence
**Core Ideas:**
- SQLAlchemy models for structured data
- Data versioning across patches
- Bulk operations for efficient updates
- Migration system for schema evolution
- Historical data preservation
---
## Phase 6: Integration & APIs
### **Task 6.1: Riot API Integration**
**Objective:** Integrate official Riot Games API
**Status:** ๐ **PENDING** - Official data source
**Purpose:**
- **Hybrid approach**: Combine official API with Wiki scraping
- **Real-time data**: Live match information and player stats
- **Asset access**: Champion icons, ability images, and resources
**Core Ideas:**
- Riot API client with rate limiting
- Official match and player data access
- Asset downloads and management
- Data synchronization between sources
- Hybrid data validation and merging
### **Task 6.2: External Data Sources**
**Objective:** Connect with external LoL data sources
**Status:** ๐ **PENDING** - Data source expansion
**Core Ideas:**
- Champion.gg for build and winrate data
- OP.GG for player statistics
- Lolalytics for advanced analytics
- U.GG for tier lists and meta analysis
- Data aggregation and normalization
---
## Phase 7: Production & Quality
### **Task 7.1: Testing and Validation**
**Objective:** Comprehensive testing suite
**Status:** ๐ **PENDING** - Quality assurance
**Core Ideas:**
- Unit testing for all components
- Integration testing for end-to-end functionality
- Performance testing under load
- Data validation and accuracy checks
- Automated testing pipeline
### **Task 7.2: Deployment and Monitoring**
**Objective:** Production-ready deployment
**Status:** ๐ **PENDING** - Production deployment
**Core Ideas:**
- Docker containerization
- Health monitoring and alerting
- Structured logging and tracing
- Auto-scaling capabilities
- Error tracking and reporting
---
## Phase 8: Documentation & Community
### **Task 8.1: Documentation System**
**Objective:** Complete user and developer documentation
**Status:** ๐ **PENDING** - Documentation
**Core Ideas:**
- API documentation with examples
- Usage guides and tutorials
- Developer contribution guidelines
- Integration documentation
- Best practices and patterns
### **Task 8.2: Community Support**
**Objective:** Tools for community developers
**Status:** ๐ **PENDING** - Community features
**Core Ideas:**
- SDK development for popular languages
- Plugin system for extensibility
- Example applications and demos
- Community contribution workflows
- Open source development guidelines
---
## โก Performance Optimizations (v2.3.1)
**Phase 2 Code Optimization** completed with significant performance improvements:
### ๐โโ๏ธ **High-Impact Optimizations Implemented:**
1. **WebDriverWait Optimization** (`stats_scraper.py`)
- **Before:** Fixed 1-second `time.sleep()` delays
- **After:** Intelligent WebDriverWait conditions with fallback
- **Impact:** ~50% faster level-specific stat scraping
2. **HTTP Request Caching** (`abilities_scraper.py`)
- **Before:** Redundant page fetches for dual-form detection + single-form scraping
- **After:** Fetch once, reuse cached soup object
- **Impact:** ~40% faster single-form champion processing
3. **Improved Dual-Form Detection** (`abilities_scraper.py`)
- **Before:** Selenium fallback for HTTP detection failures
- **After:** Enhanced HTTP-based detection with better selectors
- **Impact:** More reliable detection, fewer Selenium calls
### ๐ **Performance Metrics:**
- **Scraping Speed:** 40-60% improvement for champion abilities
- **Memory Usage:** Reduced BeautifulSoup object duplication
- **Error Handling:** More specific error propagation
- **Code Maintainability:** Cleaner separation of concerns
### ๐ง **Technical Improvements:**
- Eliminated blocking operations where possible
- Reduced redundant network requests
- Better error handling without obscuring original errors
- Consolidated text processing logic
**See `docs/RECOMMENDATIONS.md` for detailed technical analysis and additional optimization opportunities.**
---
## ๐ Getting Started
To begin implementation:
1. **Start with Task 1.1** - Project setup and structure
2. **Focus on MVP** - Complete Phase 1 before moving to data sources
3. **Prioritize Imitation Learning** - Implement Phase 4 (IL Data Services) early
4. **Add Core Analysis** - Implement frame-by-frame analysis (Phase 5)
5. **Build Training Pipeline** - Add state-action pair generation (Phase 6)
6. **Test Early** - Implement tests alongside each task
7. **Iterate Fast** - Get basic functionality working before optimization
8. **Validate Continuously** - Test with real MCP clients throughout development
Each task is designed to be completable in 2-4 hours of focused development time and produces a working, testable component that contributes to the overall system.
The enhanced system now provides comprehensive LoL data access, sophisticated gameplay analysis, **ready-to-train imitation learning datasets**, and AI training capabilities that can support everything from individual player improvement to cutting-edge reinforcement learning research.
---