Skip to main content
Glama

Enhanced Gemini MCP Server

by ECamposSoria
test_enhanced.py1.84 kB
#!/usr/bin/env python3 """Test script for enhanced MCP server""" import json import subprocess import sys def test_mcp_tool(tool_name, params): """Test an MCP tool call""" request = { "jsonrpc": "2.0", "id": 3, "method": "tools/call", "params": { "name": tool_name, "arguments": params } } process = subprocess.Popen( ["python3", "/home/eze/.claude-mcp-servers/gemini-collab-enhanced/server.py"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) # Send initialization first init_request = {"jsonrpc": "2.0", "id": 1, "method": "initialize", "params": {}} process.stdin.write(json.dumps(init_request) + "\n") process.stdin.flush() # Read initialization response init_response = process.stdout.readline() print(f"Init response: {init_response.strip()}") # Send the actual tool call process.stdin.write(json.dumps(request) + "\n") process.stdin.flush() process.stdin.close() # Read response response = process.stdout.readline() process.wait() return json.loads(response) if __name__ == "__main__": print("🧪 Testing Enhanced MCP Server...") # Test loading current project print("\n📁 Testing load_codebase...") result = test_mcp_tool("load_codebase", { "project_path": "/home/eze/projects/claude_code-gemini-mcp", "max_tokens": 50000 # Small limit for testing }) if "result" in result: print("✅ load_codebase successful!") content = result["result"]["content"][0]["text"] print(f"📄 Response preview: {content[:200]}...") else: print(f"❌ load_codebase failed: {result.get('error', 'Unknown error')}")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ECamposSoria/gemini-mcp-enhanced'

If you have feedback or need assistance with the MCP directory API, please join our Discord server