GITHUB_TEMPLATES_SETUP.mdā¢8.6 kB
# š¤ GitHub Issue Templates for Copilot Optimization - Complete Setup
## š Created Files and Structure
Your repository now includes a comprehensive set of GitHub issue templates optimized for AI coding agents like GitHub Copilot:
```
.github/
āāā ISSUE_TEMPLATE/
ā āāā README.md # Comprehensive guide for using templates
ā āāā config.yml # Issue template configuration
ā āāā bug_report.yml # š Copilot-optimized bug reports
ā āāā feature_request.yml # ⨠Technical feature specifications
ā āāā copilot_task.yml # š¤ Specific coding task requests
ā āāā documentation.yml # š Documentation improvement requests
āāā workflows/
ā āāā copilot-validation.yml # š Automated validation workflow
āāā
SAMPLE_COPILOT_ISSUE.md # š Example of best practices
```
## šÆ Key Features
### 1. **Copilot-Optimized Bug Reports** (`bug_report.yml`)
- **Environment Details**: Complete system information for context
- **Reproduction Steps**: Clear, step-by-step instructions
- **Code Context**: Points to relevant files and functions
- **Error Analysis**: Structured logging and error information
- **Testing Hints**: Guidance for reproducing and testing fixes
**Example sections:**
```yaml
**Code Areas to Focus:**
- [ ] PowerShell execution (`execute_powershell` function)
- [ ] MCP tool definitions
- [ ] Resource handlers
- [ ] Template processing
- [ ] Error handling
```
### 2. **Technical Feature Requests** (`feature_request.yml`)
- **API Specifications**: Complete function signatures and interfaces
- **Implementation Guidance**: Code patterns and examples to follow
- **Integration Points**: How features connect to existing systems
- **Acceptance Criteria**: Clear definition of done
- **Quality Checklists**: Comprehensive validation requirements
**Example specifications:**
```python
@mcp.tool()
async def new_feature_tool(
param1: str,
param2: Optional[int] = None,
ctx: Optional[Context] = None
) -> str:
"""Complete docstring with Args and Returns"""
```
### 3. **Focused Copilot Tasks** (`copilot_task.yml`)
- **Task Categorization**: Bug fix, feature, refactoring, etc.
- **Step-by-Step Implementation**: Phased development approach
- **Code Context**: Existing patterns and functions to reference
- **Quality Requirements**: Security, performance, testing standards
- **Integration Instructions**: How to connect new code to existing systems
**Example implementation guide:**
```markdown
**Phase 1: Planning**
- [ ] Review existing code patterns
- [ ] Identify dependencies and imports needed
- [ ] Plan function structure and flow
**Phase 2: Core Implementation**
- [ ] Implement main functionality
- [ ] Add input validation
- [ ] Add error handling
- [ ] Add logging and progress reporting
```
### 4. **Documentation Requests** (`documentation.yml`)
- **Content Specifications**: What documentation needs updating
- **Style Guidelines**: Formatting and structure requirements
- **Example Templates**: Consistent documentation patterns
- **Target Audiences**: End users, contributors, administrators
### 5. **Automated Validation Workflow** (`copilot-validation.yml`)
- **Issue Quality Checks**: Validates Copilot-ready issues have required sections
- **Code Quality Testing**: Linting, formatting, type checking
- **Security Scanning**: Automated security vulnerability detection
- **Documentation Validation**: Ensures docs are current and complete
- **Copilot Readiness Assessment**: Checks code structure for AI optimization
## š Benefits for AI-Assisted Development
### For GitHub Copilot:
1. **Rich Context**: Detailed information about codebase structure and patterns
2. **Clear Specifications**: Exact function signatures and requirements
3. **Implementation Patterns**: Examples of existing code to follow
4. **Quality Standards**: Explicit requirements for code quality and testing
### For Development Teams:
1. **Consistent Issue Quality**: Standardized information gathering
2. **Faster Implementation**: Clear specifications reduce back-and-forth
3. **Better Code Quality**: Built-in quality checklists and requirements
4. **Knowledge Transfer**: Documentation of patterns and best practices
### For Project Maintenance:
1. **Automated Validation**: GitHub Actions workflow validates issues and PRs
2. **Security Monitoring**: Automatic security scanning and reporting
3. **Quality Metrics**: Tracking of code quality and documentation completeness
4. **Development Analytics**: Insights into development patterns and efficiency
## š Usage Instructions
### Creating Issues
1. **For Bugs**: Use the š Bug Report template
- Include complete environment details
- Provide step-by-step reproduction
- Point to relevant code areas
- Include logs and error messages
2. **For New Features**: Use the ⨠Feature Request template
- Provide technical specifications
- Include API design and examples
- Define acceptance criteria
- Plan implementation phases
3. **For Specific Tasks**: Use the š¤ Copilot Task Request template
- Define clear, focused objectives
- Provide implementation guidance
- Include quality checklists
- Reference existing code patterns
4. **For Documentation**: Use the š Documentation Update template
- Specify exact files and sections
- Provide style guidelines
- Include target audience information
### Working with the Templates
1. **Read the Sample Issue**: Review `SAMPLE_COPILOT_ISSUE.md` for best practices
2. **Follow the Patterns**: Use the established structure and sections
3. **Provide Context**: Always include relevant code locations and patterns
4. **Be Specific**: Give exact specifications rather than vague requirements
5. **Include Examples**: Show expected inputs, outputs, and behavior
## š§ Configuration Options
### Issue Template Configuration (`config.yml`)
- Disables blank issues to encourage structured reporting
- Provides helpful links to documentation and resources
- Can be customized to add more contact links or resources
### GitHub Actions Workflow (`copilot-validation.yml`)
- Runs on every PR and push to main/develop branches
- Validates issue quality for Copilot optimization
- Performs comprehensive code quality checks
- Can be customized to add more validation steps
### Labels and Automation
The templates automatically assign labels:
- `copilot-ready` - Issues optimized for AI assistance
- `copilot-task` - Specific development tasks
- `needs-triage` - Requires review and prioritization
- `needs-implementation` - Ready for development
## š Quality Metrics
The templates help track:
- **Issue Completeness**: Required sections and information
- **Code Quality**: Type hints, documentation, error handling
- **Security Standards**: Input validation, safe operations
- **Testing Coverage**: Test cases and validation requirements
- **Documentation Currency**: Up-to-date docs and examples
## š Continuous Improvement
### Regular Reviews
1. **Template Effectiveness**: Monitor if issues provide enough context
2. **AI Success Rates**: Track how well AI agents handle templated issues
3. **Developer Feedback**: Gather input on template usability
4. **Quality Outcomes**: Measure code quality improvements
### Template Updates
1. **Add New Sections**: As new patterns emerge in the codebase
2. **Refine Examples**: Update code examples to match current patterns
3. **Improve Automation**: Enhance GitHub Actions validation
4. **Update References**: Keep documentation links current
## š Success Indicators
Your issue templates are working well when you see:
- ā
Issues contain comprehensive technical specifications
- ā
AI agents can implement features with minimal clarification
- ā
Code quality remains consistent across contributions
- ā
Security and testing requirements are consistently met
- ā
Documentation stays current and complete
- ā
Development velocity increases with better requirements
## š Additional Resources
- **GitHub Issue Templates**: https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests
- **GitHub Copilot Best Practices**: https://docs.github.com/en/copilot/using-github-copilot
- **GitHub Actions**: https://docs.github.com/en/actions
- **MCP Documentation**: https://modelcontextprotocol.io/
Your repository is now fully equipped with industry-leading issue templates optimized for AI-assisted development! š