Skip to main content
Glama

Netlify MCP Server

# GitHub Issue Templates - Implementation Summary ## ✅ Successfully Created Copilot-Optimized Issue Templates ### 📁 File Structure ``` .github/ └── ISSUE_TEMPLATE/ ├── README.md # Documentation and usage guidelines ├── config.yml # Template configuration ├── bug_report.yml # Bug reporting template ├── feature_request.yml # Feature request template ├── copilot_task.yml # AI/Copilot specialized template ├── question.yml # General questions and discussions ├── documentation.yml # Documentation improvements └── sample_best_practices.yml # Example demonstrating best practices ``` ### 🎯 Key Features for AI/Copilot Optimization #### 1. **Structured Data Collection** - **Dropdown Menus**: Standardized categories and options - **Required Fields**: Ensures essential information is always provided - **Code Blocks**: Syntax-highlighted examples with language hints - **JSON Schemas**: Structured parameter examples for tools #### 2. **Technical Precision** - **Environment Details**: Complete technical stack information - **Error Context**: Comprehensive error reporting with stack traces - **Tool Parameters**: Exact parameter values and schemas - **Implementation Hints**: Specific guidance for code generation #### 3. **AI-Friendly Content Structure** - **Clear Objectives**: Specific, measurable goals - **Scope Boundaries**: Explicit in-scope and out-of-scope definitions - **Acceptance Criteria**: Testable conditions for success - **Code Patterns**: Reusable implementation examples ### 📋 Template Breakdown #### 🐛 **Bug Report Template** - **Purpose**: Comprehensive bug reporting for technical issues - **AI Features**: - Tool-specific error categorization - Environment detail collection - Structured reproduction steps - Parameter validation context #### 🚀 **Feature Request Template** - **Purpose**: Detailed feature specifications with technical requirements - **AI Features**: - Technical specifications with code examples - API integration details - Implementation guidance - Compatibility considerations #### 🤖 **Copilot Task Template** ⭐ - **Purpose**: Specialized template designed specifically for AI coding assistants - **AI Features**: - Clear, actionable objectives - Detailed acceptance criteria - Implementation patterns and hints - Validation and testing guidance - File-specific modification targets #### ❓ **Question/Discussion Template** - **Purpose**: General questions with context for better answers - **AI Features**: - Context-driven question structure - Environment information collection - AI/automation context fields #### 📚 **Documentation Template** - **Purpose**: Improving documentation quality - **AI Features**: - AI-friendly content structure requests - Example and code sample requirements - Structured improvement suggestions #### 📋 **Sample Best Practices** ⭐ - **Purpose**: Demonstration template showing optimal issue structure - **AI Features**: - Complete example of all best practices - Reference implementation for contributors - Educational content for AI training ### 🔧 Technical Implementation Details #### **Form Validation** - Required fields ensure completeness - Dropdown options standardize responses - Text area placeholders guide input format - Code block rendering with syntax highlighting #### **Automatic Labeling** - Issues automatically tagged by category - Priority levels for triage - Component mapping for assignment - AI-specific labels for automated processing #### **Integration Points** - Links to documentation and support resources - References to related issues and PRs - Connection to project conventions and patterns ### 🎯 Benefits for AI Coding Assistants #### **Improved Context Understanding** - Structured information makes AI parsing more reliable - Technical specifications reduce ambiguity - Clear scope boundaries prevent scope creep #### **Enhanced Code Generation** - Specific implementation patterns to follow - Target file and function locations - Expected code structure and style guidelines #### **Better Error Handling** - Comprehensive error context and reproduction steps - Environment details for debugging - Validation requirements for testing #### **Efficient Issue Processing** - Standardized format enables automated analysis - Clear success criteria for validation - Predictable information structure for AI processing ### 🚀 Additional Files Created #### **Quick Start Guide** (`QUICK_START.md`) - **Purpose**: Get users running in under 5 minutes - **Features**: Step-by-step setup with common troubleshooting #### **Template Documentation** (`.github/ISSUE_TEMPLATE/README.md`) - **Purpose**: Comprehensive guide for using templates effectively - **Features**: Best practices, customization guide, AI optimization tips ### 💡 Best Practices Implemented 1. **Specificity**: Every field requests specific, actionable information 2. **Context**: Sufficient background for informed decision-making 3. **Structure**: Consistent formatting for AI parsing 4. **Validation**: Testable criteria for objective success measurement 5. **Guidance**: Clear direction for implementation and testing ### 🔄 Future Enhancements These templates can be extended with: - Additional project-specific tools and components - Integration with project management tools - Automated issue analysis and routing - Custom validation rules for different issue types ### ✅ Ready for Use The issue templates are now ready and will: 1. **Improve Issue Quality**: Structured templates ensure comprehensive information 2. **Enhance AI Interaction**: Optimized for Copilot and other coding assistants 3. **Streamline Development**: Clear requirements reduce back-and-forth communication 4. **Support Automation**: Standardized format enables automated processing **Next Steps**: - Contributors can start using templates immediately - Monitor issue quality and adjust templates as needed - Consider adding project-specific customizations over time --- **Templates are production-ready and optimized for AI coding assistant workflows! 🚀**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/DynamicEndpoints/Netlify-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server