Skip to main content
Glama

search_sciencedirect

Search academic papers from Elsevier's ScienceDirect database to find relevant research articles using filters for year, author, journal, and open access status.

Instructions

Search academic papers from Elsevier ScienceDirect database (requires API key)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYesSearch query string
maxResultsNoMaximum number of results to return
yearNoYear filter (e.g., "2023", "2020-2023")
authorNoAuthor name filter
journalNoJournal name filter
openAccessNoFilter for open access articles only

Implementation Reference

  • The handler function for the 'search_sciencedirect' tool. It validates the Elsevier API key, calls the ScienceDirect searcher's search method with provided parameters, and returns a formatted JSON response with search results.
    case 'search_sciencedirect': { const { query, maxResults, year, author, journal, openAccess } = args; if (!process.env.ELSEVIER_API_KEY) { throw new Error('Elsevier API key not configured. Please set ELSEVIER_API_KEY environment variable.'); } const results = await searchers.sciencedirect.search(query, { maxResults, year, author, journal, openAccess }); return jsonTextResponse( `Found ${results.length} ScienceDirect papers.\n\n${JSON.stringify( results.map((paper: Paper) => PaperFactory.toDict(paper)), null, 2 )}` ); }
  • Zod schema definition for validating input arguments to the search_sciencedirect tool.
    export const SearchScienceDirectSchema = z .object({ query: z.string().min(1), maxResults: z.number().int().min(1).max(100).optional().default(10), year: z.string().optional(), author: z.string().optional(), journal: z.string().optional(), openAccess: z.boolean().optional() }) .strip();
  • Tool registration entry in the tools array, defining name, description, and input schema for the MCP tool.
    name: 'search_sciencedirect', description: 'Search academic papers from Elsevier ScienceDirect database (requires API key)', inputSchema: { type: 'object', properties: { query: { type: 'string', description: 'Search query string' }, maxResults: { type: 'number', minimum: 1, maximum: 100, description: 'Maximum number of results to return' }, year: { type: 'string', description: 'Year filter (e.g., "2023", "2020-2023")' }, author: { type: 'string', description: 'Author name filter' }, journal: { type: 'string', description: 'Journal name filter' }, openAccess: { type: 'boolean', description: 'Filter for open access articles only' } }, required: ['query'] } },
  • Core implementation of the search functionality in ScienceDirectSearcher class, handling API requests to Elsevier's ScienceDirect, parsing responses, and creating Paper objects.
    async search(query: string, options: SearchOptions = {}): Promise<Paper[]> { const customOptions = options as any; if (!this.apiKey) { throw new Error('ScienceDirect API key is required'); } const maxResults = Math.min(options.maxResults || 10, 100); const papers: Paper[] = []; try { // Use PUT method with new API format (matching Python implementation) const requestBody: any = { qs: query }; // Add year filter if (options.year) { if (options.year.includes('-')) { const [startYear, endYear] = options.year.split('-'); requestBody.date = endYear ? `${startYear}-${endYear}` : startYear; } else { requestBody.date = options.year; } } // Add author filter if (options.author) { requestBody.authors = options.author; } // Display options requestBody.display = { offset: 0, show: maxResults, sortBy: options.sortBy === 'date' ? 'date' : 'relevance' }; await this.rateLimiter.waitForPermission(); const response = await this.client.put('/content/search/sciencedirect', requestBody, { headers: { 'Content-Type': 'application/json' } }); const results = response.data?.results || []; for (const result of results) { const paper = this.parseNewApiResult(result); if (paper) { papers.push(paper); } } // Enrich with abstracts if requested if (customOptions.includeAbstract && papers.length > 0) { const enrichedPapers = await this.enrichPapersWithAbstracts(papers); return enrichedPapers; } return papers; } catch (error: any) { this.handleHttpError(error, 'search'); } }
  • Instantiation and registration of the ScienceDirectSearcher instance in the global searchers object, using the ELSEVIER_API_KEY environment variable.
    const scienceDirectSearcher = new ScienceDirectSearcher(process.env.ELSEVIER_API_KEY); const springerSearcher = new SpringerSearcher( process.env.SPRINGER_API_KEY, process.env.SPRINGER_OPENACCESS_API_KEY ); const wileySearcher = new WileySearcher(process.env.WILEY_TDM_TOKEN); const scopusSearcher = new ScopusSearcher(process.env.ELSEVIER_API_KEY); const crossrefSearcher = new CrossrefSearcher(process.env.CROSSREF_MAILTO); searchers = { arxiv: arxivSearcher, webofscience: wosSearcher, pubmed: pubmedSearcher, wos: wosSearcher, biorxiv: biorxivSearcher, medrxiv: medrxivSearcher, semantic: semanticSearcher, iacr: iacrSearcher, googlescholar: googleScholarSearcher, scholar: googleScholarSearcher, scihub: sciHubSearcher, sciencedirect: scienceDirectSearcher, springer: springerSearcher, wiley: wileySearcher, scopus: scopusSearcher, crossref: crossrefSearcher }; logDebug('Searchers initialized successfully'); return searchers;

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Dianel555/paper-search-mcp-nodejs'

If you have feedback or need assistance with the MCP directory API, please join our Discord server