Skip to main content
Glama
server.py1.68 kB
from mcp.server.fastmcp import FastMCP from mcp_server.tools import ( get_unprocessed_employees, get_all_employees, update_employee_row, update_experience_from_doj, reset_processed_flag_for_reprocessing, ) mcp = FastMCP("excel-mcp-server") # Tool 1: fetch_unprocessed @mcp.tool() def fetch_unprocessed(): """ Fetch all unprocessed rows from Excel. """ return get_unprocessed_employees() # Tool 1b: fetch_all_employees @mcp.tool() def fetch_all_employees(): """ Fetch ALL employee rows from Excel for comprehensive scanning and updating. This includes both processed and unprocessed employees. """ return get_all_employees() # Tool 2: apply_employee_update @mcp.tool() def apply_employee_update( row_id: int, updates: dict, reason: str, confidence: float, ): """ Apply agent decision safely to Excel. """ return update_employee_row( row_id=row_id, updates=updates, reason=reason, confidence=confidence, ) # Tool 3: update_experience @mcp.tool() def update_experience(): """ Recalculate Experience_Years for all employees based on their DOJ (Date of Joining). Run this periodically (e.g., once a year) to update experience automatically. """ return update_experience_from_doj() # Tool 4: reset_processed_flag @mcp.tool() def reset_processed_flag(): """ Reset Is_Processed flag to "No" for all employees to allow reprocessing. Use this after updating experience to reprocess all employees with new experience values. """ return reset_processed_flag_for_reprocessing() if __name__ == "__main__": mcp.run()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Dhruvimahale08/Excel_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server