Skip to main content
Glama

Axion Planetary MCP

by Dhenenjay
README.mdβ€’3.51 kB
# Axion Planetary AI Module Foundation model integration for intelligent planetary data analysis. ## Overview This module integrates Claude 3.5 Sonnet via AWS Bedrock to provide: - Automated planetary data classification - Spectral analysis and interpretation - Anomaly detection in sensor data - Mission planning assistance - Natural language insights generation ## Architecture ``` ai/ β”œβ”€β”€ services/ # LLM client implementations β”œβ”€β”€ processors/ # Analysis pipelines β”œβ”€β”€ prompts/ # Prompt templates β”œβ”€β”€ storage/ # Vector embeddings store └── model-config.json # Model configuration ``` ## Setup ### Prerequisites - AWS Bedrock access with Claude 3.5 Sonnet enabled - AWS credentials configured ### Installation ```bash cd ai npm install ``` ### Configuration Edit `model-config.json` to customize: - Model selection (Claude, Titan, etc.) - Temperature and sampling parameters - Rate limits - Feature flags ## Usage ### Basic Analysis ```typescript import { AIDataAnalyzer } from './ai/processors/data-analyzer'; const analyzer = new AIDataAnalyzer(); const result = await analyzer.analyzePlanetaryData(planetData); console.log(result.classification, result.confidence); ``` ### Streaming Responses ```typescript import { BedrockClient } from './ai/services/bedrock-client'; const client = new BedrockClient(); const stream = await client.generateText(prompt, { streaming: true }); for await (const chunk of stream) { process.stdout.write(chunk); } ``` ### Vector Search ```typescript import { VectorStore } from './ai/storage/vector-store'; const store = new VectorStore(); await store.addDocument('doc1', 'Mars surface composition...', { source: 'MRO' }); const results = await store.search('iron oxide deposits'); console.log(results); ``` ## API Endpoints ### POST `/api/ai/analyze` Analyze planetary data using foundation models. **Request:** ```json { "type": "planetary", "data": { "name": "Kepler-442b", "radius": 1.34, "mass": 2.3, "temperature": 233 } } ``` **Response:** ```json { "success": true, "result": { "classification": "Super-Earth", "confidence": 0.87, "features": { ... }, "recommendations": [ ... ] } } ``` ### POST `/api/ai/stream` Stream AI responses in real-time. **Request:** ```json { "prompt": "Explain the significance of water ice on Mars" } ``` **Response:** Server-Sent Events stream ## Model Selection Current models: - **Primary:** Claude 3.5 Sonnet (200K context) - **Fallback:** Claude 3 Haiku (fast responses) - **Embeddings:** Titan Embeddings v2 (1024 dimensions) ## Prompt Engineering Prompts are optimized for: - Structured output (JSON) - Scientific accuracy - Confidence scoring - Actionable recommendations See `prompts/planetary-analysis.ts` for templates. ## Performance - Response time: ~2-5s (non-streaming) - Streaming latency: ~200ms to first token - Embedding generation: ~100ms - Cache hit ratio: ~40% (typical) ## Cost Management Bedrock pricing (approximate): - Claude 3.5 Sonnet: $3/M input tokens, $15/M output tokens - Claude 3 Haiku: $0.25/M input tokens, $1.25/M output tokens - Titan Embeddings: $0.0001/1K tokens Implement caching and rate limiting to control costs. ## Roadmap - [ ] Multi-modal analysis (images + text) - [ ] Fine-tuned models for domain-specific tasks - [ ] Agent workflows with tool use - [ ] Batch processing optimization - [ ] Real-time collaboration features ## License MIT

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Dhenenjay/axion-planetary-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server