Skip to main content
Glama
AXION_MODEL.mdβ€’5.7 kB
# πŸ›°οΈ Axion Foundation Model > **World's First Petabyte-Scale Satellite MCP** > 86.66% mIoU | 10K+ Downloads | CVPR 2026 (Under Review) ## What is Axion? Axion is a breakthrough **SAR-to-Optical foundation model** that transforms radar imagery into crystal-clear optical viewsβ€”**seeing through clouds, storms, and darkness**. ### The Innovation - **Novel Architecture:** TerraMind encoder + DARN adaptive decoder - **State-of-the-Art:** 86.66% mIoU accuracy (+5.56 points improvement) - **Multi-Modal:** Generates RGB, DEM, LULC, NDVI simultaneously - **All-Weather:** 24/7 Earth observation regardless of conditions ## πŸ”΄ IMPORTANT: Model Access Options ### Option 1: AWS Raw Inference (Limited) ```bash # For researchers and experimenters # Access raw neural network outputs only ``` **What you get:** - βœ… Direct model inference - βœ… Raw predictions - ❌ No data processing pipeline - ❌ No analysis tools - ❌ No AI agent integration ### Option 2: MCP Server (Full Platform) ⭐ **RECOMMENDED** ```bash npm install @axion-orbital/mcp-server ``` **What you get:** - βœ… Complete end-to-end platform - βœ… Automated data acquisition - βœ… Multi-modal processing pipeline - βœ… AI agent natural language interface - βœ… Real-time analysis and monitoring - βœ… Production deployment tools - βœ… Visualization and export capabilities ## 🚨 MCP Server Exclusive Features The following features are **ONLY** available through our hosted MCP server: ### 1. Zero-Setup Data Processing ```typescript // MCP handles everything const result = await axion.analyze({ location: "San Francisco Bay Area", timeRange: "last 30 days" }); // Data acquisition, preprocessing, inference, analysis - all automatic ``` ### 2. Natural Language AI Interface ```typescript // Works with Claude, ChatGPT, any MCP-compatible agent await axion.query( "Show me flood risk areas in Southeast Asia during monsoon season" ); ``` ### 3. Real-Time Monitoring ```typescript // Production-grade monitoring and alerts await axion.monitor({ region: agriculturalZones, alerts: ['crop_stress', 'flooding'], frequency: 'daily' }); ``` ### 4. Complete Analysis Pipeline - Change detection algorithms - Anomaly identification - Statistical analysis - Automated reporting - Export in multiple formats ## Why MCP Server is Required for Production | Capability | Raw Inference | MCP Server | |------------|--------------|------------| | **Model Access** | Basic | Optimized | | **Data Acquisition** | Manual | Automated | | **Preprocessing** | Not included | Included | | **Multi-Modal Analysis** | Raw only | Fully processed | | **AI Agent Integration** | No | Native support | | **Visualization Tools** | No | Advanced | | **Production Ready** | No | Yes | | **Scalability** | Limited | Enterprise-grade | | **Support** | Community | Priority | ## Quick Start (MCP Server) ```typescript import { AxionMCP } from '@axion-orbital/mcp-server'; const axion = new AxionMCP(); // Analyze any location on Earth const analysis = await axion.analyzeSAR({ coordinates: { lat: 37.7749, lon: -122.4194 }, date: '2025-01-15', modalities: ['rgb', 'ndvi', 'lulc', 'dem'] }); // Get optical-quality imagery from SAR console.log(analysis.rgb); // Clear optical image console.log(analysis.ndvi); // Vegetation health console.log(analysis.lulc); // Land classification console.log(analysis.dem); // Elevation map console.log(analysis.confidence); // Model confidence ``` ## Architecture ``` SAR Radar Input (Sentinel-1, DEM) ↓ [TerraMind Multi-Modal Encoder] ↓ [DARN Adaptive Decoder] ← Our Novel Contribution ↓ Multi-Modal Outputs (RGB, NDVI, LULC, DEM) ``` **Key Innovation:** Our DARN (Dynamic Adaptive Residual Network) decoder achieves 86.66% mIoU on GeoBench, surpassing all U-Net-based architectures. ## Applications - 🚨 **Disaster Response:** Real-time flood, fire, hurricane monitoring - 🌾 **Precision Agriculture:** Continuous crop health tracking - 🌍 **Climate Intelligence:** Deforestation and environmental monitoring - πŸ™οΈ **Urban Planning:** Infrastructure development analysis - πŸ›‘οΈ **Defense & Security:** All-weather situational awareness - 🌊 **Maritime Monitoring:** Vessel tracking and coastal analysis ## Performance Metrics - **mIoU Accuracy:** 86.66% - **Improvement over SOTA:** +5.56 percentage points - **Model Downloads:** 10,000+ - **Active Researchers:** 3,000+ - **Benchmark:** GeoBench (ESA-endorsed) ## Research **Paper:** DARN: Dynamic Adaptive Residual Network for SAR-to-Optical Translation **Status:** Under review at CVPR 2026 **Innovation:** Novel adaptive decoder architecture ## Links - 🌐 **Website:** https://axionorbital.space - πŸ“š **MCP Docs:** https://docs.axionorbital.space - πŸ’» **GitHub:** https://github.com/axion-orbital - πŸ”¬ **Research Paper:** [Coming Soon] - πŸ’¬ **Discord:** https://discord.gg/axion-orbital ## Citation ```bibtex @inproceedings{axion2026, title={DARN: Dynamic Adaptive Residual Network for SAR-to-Optical Translation}, author={Axion Orbital Team}, booktitle={CVPR}, year={2026} } ``` --- ## ⚠️ TL;DR - **Axion = Foundation Model** (the neural network) - **AWS Raw Inference = Research Access** (raw outputs only) - **MCP Server = Complete Platform** (everything you need) **For production use, AI agent integration, and the full platform experience:** ```bash npm install @axion-orbital/mcp-server ``` **The exclusive Axion foundation model with all processing and analysis capabilities is ONLY available through the hosted MCP server.** --- Made with πŸ›°οΈ by [Axion Orbital](https://axionorbital.space)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Dhenenjay/axion-planetary-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server