faq.mdβ’16.1 kB
# Frequently Asked Questions
**Common questions and answers about the MCP Template Platform.**
## General Questions
### What is the MCP Template Platform?
The MCP Template Platform is a comprehensive system for deploying and managing Model Context Protocol (MCP) servers. It provides pre-built templates for common integrations, a CLI tool for easy deployment, and tools for creating custom MCP servers.
**Key Benefits:**
- π **One-command deployment** of MCP servers
- π¦ **Pre-built templates** for popular services
- π§ **Template creation tools** for custom integrations
- π³ **Docker-based** for consistent deployments
- π **Automatic tool discovery** using MCP protocol
### How does it relate to the Model Context Protocol?
The platform implements the official [Model Context Protocol](https://modelcontextprotocol.io) specification. It provides:
- **MCP Server Templates**: Pre-configured servers that expose tools via MCP
- **Protocol Implementation**: Full MCP 2025-06-18 specification support
- **Tool Discovery**: Automatic detection of available MCP tools
- **Client Integration**: Ready-to-use configurations for LLM clients
### Is this officially associated with Anthropic?
No, this is an independent open-source project that implements the MCP specification. While it follows the official MCP protocol, it's not developed or endorsed by Anthropic.
## Getting Started
### What are the system requirements?
**Minimum Requirements:**
- Python 3.8+
- Docker 20.10+
- 2GB RAM
- 10GB disk space
**Recommended:**
- Python 3.11+
- Docker 24.0+
- 4GB RAM
- 20GB disk space
**Operating System Support:**
- β
Linux (all distributions)
- β
macOS 10.15+
- β
Windows 10+ (with WSL2)
### How do I install the platform?
```bash
# Install from PyPI
pip install mcp-templates
# Verify installation
mcpt --version
# Test with demo template
mcpt deploy demo
```
See the [Installation Guide](getting-started/installation.md) for detailed instructions.
### What templates are available?
**Popular Templates:**
- **filesystem**: Secure filesystem access
- **demo**: Basic demonstration server
- **github**: GitHub API integration
- **database**: SQL database connectivity
**Full List:**
```bash
mcpt list
```
View detailed information in the [Template Library](server-templates/index.md).
## Template Usage
### How do I deploy a template?
```bash
# Basic deployment
mcpt deploy template-name
# With configuration
mcpt deploy filesystem --config base_path=/home/user/documents
# With config file
mcpt deploy database --config-file db-config.json
```
### How do I configure templates?
**Three ways to configure templates:**
1. **Command-line options:**
```bash
mcpt deploy template --config key=value
```
2. **Configuration file:**
```bash
mcpt deploy template --config-file config.json
```
3. **Environment variables:**
```bash
export MCP_API_KEY="your-key"
mcpt deploy template
```
**Configuration precedence:** Environment Variables > CLI Options > Config File > Template Defaults
### How do I connect templates to AI assistants?
**Claude Desktop:**
```bash
# Generate configuration
mcpt connect template-name --llm claude
# Add to Claude Desktop config
# (~/.config/claude-desktop/claude_desktop_config.json)
```
**VS Code:**
```bash
# Generate VS Code configuration
mcpt connect template-name --llm vscode
```
**Custom Integration:**
```bash
# Get JSON configuration
mcpt i
mcpt> tools template-name --format json
```
### How do I see what tools are available?
```bash
# List tools in a template
mcpt> tools template-name
# Discover tools from any MCP server
mcpt> tools --image custom/mcp-server
# Get detailed tool information
mcpt> tools template-name --detailed
```
## Template Development
### How do I create a custom template?
**Interactive Creation:**
```bash
mcpt create my-custom-template
# Follow the prompts for configuration
```
**From Existing Image:**
```bash
mcpt create --from-image existing/mcp-server my-template
```
**Manual Creation:**
See the [Template Creation Guide](guides/creating-templates.md) for detailed instructions.
### What files does a template need?
**Required Files:**
```
templates/my-template/
βββ template.json # Template metadata and configuration schema
βββ Dockerfile # Container build instructions
βββ README.md # Documentation (recommended)
```
**Recommended Structure:**
```
templates/my-template/
βββ template.json # Template configuration
βββ Dockerfile # Container definition
βββ README.md # Template documentation
βββ src/ # Source code
β βββ server.py # MCP server implementation
β βββ tools.py # Tool implementations
βββ config/ # Configuration examples
βββ tests/ # Test suite
βββ docs/ # Additional documentation
```
### How do I test my template?
```bash
# Validate template structure
mcpt validate my-template
# Deploy for testing
mcpt deploy my-template
# Test tool discovery
mcpt> tools my-template
# Run template tests
cd templates/my-template
python -m pytest tests/
```
### Can I use languages other than Python?
Yes! Templates can use any language that supports the MCP protocol:
**Supported Languages:**
- β
**Python** (FastMCP, mcp-python)
- β
**TypeScript/JavaScript** (@modelcontextprotocol/sdk)
- β
**Go** (community implementations)
- β
**Rust** (community implementations)
The key requirements:
1. Implement MCP JSON-RPC over stdio
2. Support MCP protocol 2025-06-18
3. Containerized with Docker
## Deployment & Operations
### How do I manage multiple deployments?
```bash
# List all deployments
mcpt list
# Check deployment status
mcpt status
# View specific deployment
mcpt status deployment-name
# Stop deployment
mcpt stop deployment-name
# Remove deployment
mcpt delete deployment-name
```
### How do I monitor deployments?
```bash
# View logs
mcpt logs deployment-name
# Follow logs in real-time
mcpt logs deployment-name --follow
# Monitor status continuously
mcpt status --watch
# Health check only
mcpt status --health-only
```
### How do I update deployments?
```bash
# Update to latest image
mcpt deploy template-name --force-pull
# Force recreate container
mcpt deploy template-name --force-recreate
# Update with new configuration
mcpt deploy template-name --config new_setting=value
```
### Where are deployment data and logs stored?
**Default Locations:**
- **Data**: `~/mcp-data/` (mapped to `/data` in container)
- **Logs**: `~/.mcp/logs/` (mapped to `/logs` in container)
- **Config**: `~/.mcp/config/`
**Custom Locations:**
```bash
# Use custom data directory
mcpt deploy template --volume /custom/path:/data
# Multiple volumes
mcpt deploy template \
--volume /data1:/app/data1 \
--volume /data2:/app/data2
```
## Troubleshooting
### My deployment failed to start. What should I check?
1. **Check logs:**
```bash
mcpt logs deployment-name
```
2. **Verify Docker:**
```bash
docker --version
docker info
```
3. **Check configuration:**
```bash
mcpt config template-name
```
4. **Test image directly:**
```bash
docker run -it template-image:latest /bin/bash
```
See the [Troubleshooting Guide](guides/troubleshooting.md) for comprehensive solutions.
### Tools aren't being discovered. Why?
**Common Causes:**
1. **MCP server not responding**: Check container logs
2. **Wrong transport protocol**: Try `--transport stdio` or `--transport http`
3. **Container startup issues**: Verify container is running
4. **Configuration errors**: Check environment variables
**Debugging Steps:**
```bash
# Test tool discovery directly
mcpt> tools --image template:latest
# Check MCP protocol response
mcpt connect deployment --test-connection
# Monitor container startup
mcpt logs deployment --follow
```
### How do I get help with specific issues?
1. **Check Documentation:**
- [CLI Reference](cli/index.md)
- [Troubleshooting Guide](guides/troubleshooting.md)
- [Template Creation Guide](guides/creating-templates.md)
2. **Community Support:**
- GitHub Issues: Report bugs and feature requests
- GitHub Discussions: Ask questions and share solutions
- Discord Community: [Join our Discord server](https://discord.gg/55Cfxe9gnr) for real-time community chat
3. **Professional Support:**
- Enterprise support available
- Custom template development services
- Contact: support@dataeverything.ai
## Performance & Scaling
### How many deployments can I run?
**Typical Limits:**
- **Development**: 5-10 deployments per machine
- **Production**: 50+ deployments with proper resource management
**Resource Planning:**
- Each deployment: ~100-500MB RAM
- CPU usage: Minimal when idle
- Disk: Depends on data volumes
### How do I optimize performance?
**Template Level:**
```bash
# Set resource limits
mcpt deploy template --memory 512m --cpu 0.5
# Use efficient base images
# In Dockerfile: FROM python:3.11-slim instead of python:3.11
```
**System Level:**
```bash
# Clean up unused resources
docker system prune -f
# Monitor resource usage
docker stats
# Use Docker BuildKit for faster builds
export DOCKER_BUILDKIT=1
```
### Can I run this in production?
Yes! The platform supports production deployments:
**Production Features:**
- **Health Monitoring**: Built-in health checks and status monitoring
- **Logging**: Comprehensive logging with rotation
- **Resource Management**: Memory and CPU limits
- **Security**: Container isolation and network security
- **Backup**: Configuration and data backup support
**Production Recommendations:**
- Use Docker Compose or Kubernetes for orchestration
- Set up monitoring and alerting
- Implement backup strategies
- Use resource limits
- Regular security updates
## Security
### Is it safe to run MCP servers?
The platform follows security best practices:
**Security Features:**
- **Container Isolation**: Each deployment runs in isolated Docker containers
- **No Root Access**: Containers run as non-root users
- **Network Isolation**: Minimal network exposure
- **Resource Limits**: Prevents resource exhaustion
- **Secret Management**: Environment variable-based configuration
**Security Best Practices:**
- Keep images updated
- Use minimal base images
- Limit network access
- Regular security audits
- Secure secret storage
### How do I handle sensitive configuration?
**Environment Variables:**
```bash
# Use environment variables for secrets
export MCP_API_KEY="secret-key"
mcpt deploy template
```
**Config Files with Restricted Permissions:**
```bash
# Create secure config file
echo '{"api_key": "secret"}' > config.json
chmod 600 config.json
mcpt deploy template --config-file config.json
```
**External Secret Management:**
```bash
# Use external secret managers
export MCP_API_KEY=$(vault kv get -field=key secret/mcp/api)
mcpt deploy template
```
## Integration & Compatibility
### What AI assistants work with this?
**Officially Supported:**
- β
**Claude Desktop** (Anthropic)
- β
**VS Code** (with MCP extensions)
- β
**Continue.dev**
- β
**Custom Python applications**
**Community Supported:**
- β οΈ **Other LLM clients** (varies by MCP support)
### Can I integrate with existing systems?
Yes! The platform provides multiple integration options:
**API Integration:**
```python
from mcp_template import TemplateManager
manager = TemplateManager()
deployment = manager.deploy("template-name", config={"key": "value"})
tools = manager.discover_tools(deployment)
```
**CLI Integration:**
```bash
# Scriptable CLI interface
mcpt deploy template --format json
```
**Docker Integration:**
```bash
# Direct Docker usage
docker run -d --name mcp-server template:latest
```
### Does it work with Kubernetes?
**Yes!** Kubernetes backend is now fully supported alongside Docker.
**Kubernetes Deployment:**
```bash
# Deploy to Kubernetes
mcpt --backend kubernetes deploy github-server
# Specify namespace and replicas
mcpt --backend kubernetes --namespace my-namespace deploy github-server --config replicas=3
# Use custom kubeconfig
mcpt --backend kubernetes --kubeconfig ~/.kube/config deploy github-server
```
**Features:**
- **Dynamic Pod Management**: Automatic pod creation and scaling
- **Service Discovery**: Built-in Kubernetes Services for load balancing
- **Helm Chart Templates**: Generic charts for all MCP servers
- **Resource Management**: Configurable CPU/memory limits
- **Namespace Isolation**: Deploy to custom namespaces
**Example Kubernetes Configuration:**
```json
{
"github-server": {
"type": "k8s",
"replicas": 2,
"namespace": "mcp-servers",
"resources": {
"requests": {"cpu": "100m", "memory": "128Mi"},
"limits": {"cpu": "500m", "memory": "512Mi"}
},
"service": {"type": "ClusterIP", "port": 8080}
}
}
```
**Docker vs Kubernetes:**
| Feature | Docker | Kubernetes |
|---------|--------|------------|
| Orchestration | Manual | Automatic |
| Scaling | Single container | Horizontal pod scaling |
| Load Balancing | External | Built-in Services |
| Health Checks | Basic | Liveness/Readiness probes |
| Service Discovery | IP/Port | DNS-based |
## Contributing
### How can I contribute to the project?
**Ways to Contribute:**
1. **Report Issues**: Bug reports and feature requests
2. **Create Templates**: Share useful MCP server templates
3. **Improve Documentation**: Fix errors, add examples
4. **Code Contributions**: Platform improvements and new features
5. **Community Support**: Help other users in discussions
**Getting Started:**
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests
5. Submit a pull request
See the [Contributing Guide](guides/contributing.md) for detailed guidelines.
### What templates are most needed?
**High Priority:**
- **Popular APIs**: Stripe, Twilio, SendGrid
- **Database Connectors**: MongoDB, Redis, Elasticsearch
- **Cloud Services**: AWS, Google Cloud, Azure
- **Development Tools**: Jira, Linear, Notion
**Template Ideas:**
- Custom business integrations
- Industry-specific tools
- Regional service providers
- Niche technical tools
### How do I submit a new template?
1. **Create the template:**
```bash
mcpt create my-new-template
```
2. **Test thoroughly:**
```bash
mcpt deploy my-new-template
mcpt i
mcpt> tools my-new-template
```
3. **Add documentation:**
- Complete README.md
- Usage examples
- Configuration guide
4. **Submit pull request:**
- Include template in `templates/` directory
- Add tests
- Update template registry
## Commercial Usage
### Can I use this commercially?
Yes! The MCP Template Platform is open source under the MIT License, which allows commercial use.
**Commercial Usage Rights:**
- β
Use in commercial products
- β
Modify and distribute
- β
Private use
- β
Commercial distribution
**Requirements:**
- Include license notice
- No warranty provided
### Do you offer commercial support?
Yes, commercial support is available:
**Enterprise Support:**
- Priority bug fixes
- Custom template development
- Training and consulting
- SLA guarantees
**Professional Services:**
- Custom integration development
- Architecture consulting
- Team training
- Production deployment assistance
**Contact:** enterprise@dataeverything.ai
### Can I create paid templates?
While the core platform is open source, you can:
- Create proprietary templates for internal use
- Offer template development services
- Build commercial products using the platform
- Provide support and consulting services
The template ecosystem encourages both open source and commercial contributions.
---
**Still have questions?**
- π Check the [full documentation](index.md)
- π¬ Join our [community discussions](https://github.com/data-everything/mcp-server-templates/discussions)
- π [Report issues](https://github.com/data-everything/mcp-server-templates/issues)
- π§ Contact us: support@dataeverything.ai