Skip to main content
Glama

Sumanshu Arora

faq.mdβ€’16.1 kB
# Frequently Asked Questions **Common questions and answers about the MCP Template Platform.** ## General Questions ### What is the MCP Template Platform? The MCP Template Platform is a comprehensive system for deploying and managing Model Context Protocol (MCP) servers. It provides pre-built templates for common integrations, a CLI tool for easy deployment, and tools for creating custom MCP servers. **Key Benefits:** - πŸš€ **One-command deployment** of MCP servers - πŸ“¦ **Pre-built templates** for popular services - πŸ”§ **Template creation tools** for custom integrations - 🐳 **Docker-based** for consistent deployments - πŸ” **Automatic tool discovery** using MCP protocol ### How does it relate to the Model Context Protocol? The platform implements the official [Model Context Protocol](https://modelcontextprotocol.io) specification. It provides: - **MCP Server Templates**: Pre-configured servers that expose tools via MCP - **Protocol Implementation**: Full MCP 2025-06-18 specification support - **Tool Discovery**: Automatic detection of available MCP tools - **Client Integration**: Ready-to-use configurations for LLM clients ### Is this officially associated with Anthropic? No, this is an independent open-source project that implements the MCP specification. While it follows the official MCP protocol, it's not developed or endorsed by Anthropic. ## Getting Started ### What are the system requirements? **Minimum Requirements:** - Python 3.8+ - Docker 20.10+ - 2GB RAM - 10GB disk space **Recommended:** - Python 3.11+ - Docker 24.0+ - 4GB RAM - 20GB disk space **Operating System Support:** - βœ… Linux (all distributions) - βœ… macOS 10.15+ - βœ… Windows 10+ (with WSL2) ### How do I install the platform? ```bash # Install from PyPI pip install mcp-templates # Verify installation mcpt --version # Test with demo template mcpt deploy demo ``` See the [Installation Guide](getting-started/installation.md) for detailed instructions. ### What templates are available? **Popular Templates:** - **filesystem**: Secure filesystem access - **demo**: Basic demonstration server - **github**: GitHub API integration - **database**: SQL database connectivity **Full List:** ```bash mcpt list ``` View detailed information in the [Template Library](server-templates/index.md). ## Template Usage ### How do I deploy a template? ```bash # Basic deployment mcpt deploy template-name # With configuration mcpt deploy filesystem --config base_path=/home/user/documents # With config file mcpt deploy database --config-file db-config.json ``` ### How do I configure templates? **Three ways to configure templates:** 1. **Command-line options:** ```bash mcpt deploy template --config key=value ``` 2. **Configuration file:** ```bash mcpt deploy template --config-file config.json ``` 3. **Environment variables:** ```bash export MCP_API_KEY="your-key" mcpt deploy template ``` **Configuration precedence:** Environment Variables > CLI Options > Config File > Template Defaults ### How do I connect templates to AI assistants? **Claude Desktop:** ```bash # Generate configuration mcpt connect template-name --llm claude # Add to Claude Desktop config # (~/.config/claude-desktop/claude_desktop_config.json) ``` **VS Code:** ```bash # Generate VS Code configuration mcpt connect template-name --llm vscode ``` **Custom Integration:** ```bash # Get JSON configuration mcpt i mcpt> tools template-name --format json ``` ### How do I see what tools are available? ```bash # List tools in a template mcpt> tools template-name # Discover tools from any MCP server mcpt> tools --image custom/mcp-server # Get detailed tool information mcpt> tools template-name --detailed ``` ## Template Development ### How do I create a custom template? **Interactive Creation:** ```bash mcpt create my-custom-template # Follow the prompts for configuration ``` **From Existing Image:** ```bash mcpt create --from-image existing/mcp-server my-template ``` **Manual Creation:** See the [Template Creation Guide](guides/creating-templates.md) for detailed instructions. ### What files does a template need? **Required Files:** ``` templates/my-template/ β”œβ”€β”€ template.json # Template metadata and configuration schema β”œβ”€β”€ Dockerfile # Container build instructions └── README.md # Documentation (recommended) ``` **Recommended Structure:** ``` templates/my-template/ β”œβ”€β”€ template.json # Template configuration β”œβ”€β”€ Dockerfile # Container definition β”œβ”€β”€ README.md # Template documentation β”œβ”€β”€ src/ # Source code β”‚ β”œβ”€β”€ server.py # MCP server implementation β”‚ └── tools.py # Tool implementations β”œβ”€β”€ config/ # Configuration examples β”œβ”€β”€ tests/ # Test suite └── docs/ # Additional documentation ``` ### How do I test my template? ```bash # Validate template structure mcpt validate my-template # Deploy for testing mcpt deploy my-template # Test tool discovery mcpt> tools my-template # Run template tests cd templates/my-template python -m pytest tests/ ``` ### Can I use languages other than Python? Yes! Templates can use any language that supports the MCP protocol: **Supported Languages:** - βœ… **Python** (FastMCP, mcp-python) - βœ… **TypeScript/JavaScript** (@modelcontextprotocol/sdk) - βœ… **Go** (community implementations) - βœ… **Rust** (community implementations) The key requirements: 1. Implement MCP JSON-RPC over stdio 2. Support MCP protocol 2025-06-18 3. Containerized with Docker ## Deployment & Operations ### How do I manage multiple deployments? ```bash # List all deployments mcpt list # Check deployment status mcpt status # View specific deployment mcpt status deployment-name # Stop deployment mcpt stop deployment-name # Remove deployment mcpt delete deployment-name ``` ### How do I monitor deployments? ```bash # View logs mcpt logs deployment-name # Follow logs in real-time mcpt logs deployment-name --follow # Monitor status continuously mcpt status --watch # Health check only mcpt status --health-only ``` ### How do I update deployments? ```bash # Update to latest image mcpt deploy template-name --force-pull # Force recreate container mcpt deploy template-name --force-recreate # Update with new configuration mcpt deploy template-name --config new_setting=value ``` ### Where are deployment data and logs stored? **Default Locations:** - **Data**: `~/mcp-data/` (mapped to `/data` in container) - **Logs**: `~/.mcp/logs/` (mapped to `/logs` in container) - **Config**: `~/.mcp/config/` **Custom Locations:** ```bash # Use custom data directory mcpt deploy template --volume /custom/path:/data # Multiple volumes mcpt deploy template \ --volume /data1:/app/data1 \ --volume /data2:/app/data2 ``` ## Troubleshooting ### My deployment failed to start. What should I check? 1. **Check logs:** ```bash mcpt logs deployment-name ``` 2. **Verify Docker:** ```bash docker --version docker info ``` 3. **Check configuration:** ```bash mcpt config template-name ``` 4. **Test image directly:** ```bash docker run -it template-image:latest /bin/bash ``` See the [Troubleshooting Guide](guides/troubleshooting.md) for comprehensive solutions. ### Tools aren't being discovered. Why? **Common Causes:** 1. **MCP server not responding**: Check container logs 2. **Wrong transport protocol**: Try `--transport stdio` or `--transport http` 3. **Container startup issues**: Verify container is running 4. **Configuration errors**: Check environment variables **Debugging Steps:** ```bash # Test tool discovery directly mcpt> tools --image template:latest # Check MCP protocol response mcpt connect deployment --test-connection # Monitor container startup mcpt logs deployment --follow ``` ### How do I get help with specific issues? 1. **Check Documentation:** - [CLI Reference](cli/index.md) - [Troubleshooting Guide](guides/troubleshooting.md) - [Template Creation Guide](guides/creating-templates.md) 2. **Community Support:** - GitHub Issues: Report bugs and feature requests - GitHub Discussions: Ask questions and share solutions - Discord Community: [Join our Discord server](https://discord.gg/55Cfxe9gnr) for real-time community chat 3. **Professional Support:** - Enterprise support available - Custom template development services - Contact: support@dataeverything.ai ## Performance & Scaling ### How many deployments can I run? **Typical Limits:** - **Development**: 5-10 deployments per machine - **Production**: 50+ deployments with proper resource management **Resource Planning:** - Each deployment: ~100-500MB RAM - CPU usage: Minimal when idle - Disk: Depends on data volumes ### How do I optimize performance? **Template Level:** ```bash # Set resource limits mcpt deploy template --memory 512m --cpu 0.5 # Use efficient base images # In Dockerfile: FROM python:3.11-slim instead of python:3.11 ``` **System Level:** ```bash # Clean up unused resources docker system prune -f # Monitor resource usage docker stats # Use Docker BuildKit for faster builds export DOCKER_BUILDKIT=1 ``` ### Can I run this in production? Yes! The platform supports production deployments: **Production Features:** - **Health Monitoring**: Built-in health checks and status monitoring - **Logging**: Comprehensive logging with rotation - **Resource Management**: Memory and CPU limits - **Security**: Container isolation and network security - **Backup**: Configuration and data backup support **Production Recommendations:** - Use Docker Compose or Kubernetes for orchestration - Set up monitoring and alerting - Implement backup strategies - Use resource limits - Regular security updates ## Security ### Is it safe to run MCP servers? The platform follows security best practices: **Security Features:** - **Container Isolation**: Each deployment runs in isolated Docker containers - **No Root Access**: Containers run as non-root users - **Network Isolation**: Minimal network exposure - **Resource Limits**: Prevents resource exhaustion - **Secret Management**: Environment variable-based configuration **Security Best Practices:** - Keep images updated - Use minimal base images - Limit network access - Regular security audits - Secure secret storage ### How do I handle sensitive configuration? **Environment Variables:** ```bash # Use environment variables for secrets export MCP_API_KEY="secret-key" mcpt deploy template ``` **Config Files with Restricted Permissions:** ```bash # Create secure config file echo '{"api_key": "secret"}' > config.json chmod 600 config.json mcpt deploy template --config-file config.json ``` **External Secret Management:** ```bash # Use external secret managers export MCP_API_KEY=$(vault kv get -field=key secret/mcp/api) mcpt deploy template ``` ## Integration & Compatibility ### What AI assistants work with this? **Officially Supported:** - βœ… **Claude Desktop** (Anthropic) - βœ… **VS Code** (with MCP extensions) - βœ… **Continue.dev** - βœ… **Custom Python applications** **Community Supported:** - ⚠️ **Other LLM clients** (varies by MCP support) ### Can I integrate with existing systems? Yes! The platform provides multiple integration options: **API Integration:** ```python from mcp_template import TemplateManager manager = TemplateManager() deployment = manager.deploy("template-name", config={"key": "value"}) tools = manager.discover_tools(deployment) ``` **CLI Integration:** ```bash # Scriptable CLI interface mcpt deploy template --format json ``` **Docker Integration:** ```bash # Direct Docker usage docker run -d --name mcp-server template:latest ``` ### Does it work with Kubernetes? **Yes!** Kubernetes backend is now fully supported alongside Docker. **Kubernetes Deployment:** ```bash # Deploy to Kubernetes mcpt --backend kubernetes deploy github-server # Specify namespace and replicas mcpt --backend kubernetes --namespace my-namespace deploy github-server --config replicas=3 # Use custom kubeconfig mcpt --backend kubernetes --kubeconfig ~/.kube/config deploy github-server ``` **Features:** - **Dynamic Pod Management**: Automatic pod creation and scaling - **Service Discovery**: Built-in Kubernetes Services for load balancing - **Helm Chart Templates**: Generic charts for all MCP servers - **Resource Management**: Configurable CPU/memory limits - **Namespace Isolation**: Deploy to custom namespaces **Example Kubernetes Configuration:** ```json { "github-server": { "type": "k8s", "replicas": 2, "namespace": "mcp-servers", "resources": { "requests": {"cpu": "100m", "memory": "128Mi"}, "limits": {"cpu": "500m", "memory": "512Mi"} }, "service": {"type": "ClusterIP", "port": 8080} } } ``` **Docker vs Kubernetes:** | Feature | Docker | Kubernetes | |---------|--------|------------| | Orchestration | Manual | Automatic | | Scaling | Single container | Horizontal pod scaling | | Load Balancing | External | Built-in Services | | Health Checks | Basic | Liveness/Readiness probes | | Service Discovery | IP/Port | DNS-based | ## Contributing ### How can I contribute to the project? **Ways to Contribute:** 1. **Report Issues**: Bug reports and feature requests 2. **Create Templates**: Share useful MCP server templates 3. **Improve Documentation**: Fix errors, add examples 4. **Code Contributions**: Platform improvements and new features 5. **Community Support**: Help other users in discussions **Getting Started:** 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests 5. Submit a pull request See the [Contributing Guide](guides/contributing.md) for detailed guidelines. ### What templates are most needed? **High Priority:** - **Popular APIs**: Stripe, Twilio, SendGrid - **Database Connectors**: MongoDB, Redis, Elasticsearch - **Cloud Services**: AWS, Google Cloud, Azure - **Development Tools**: Jira, Linear, Notion **Template Ideas:** - Custom business integrations - Industry-specific tools - Regional service providers - Niche technical tools ### How do I submit a new template? 1. **Create the template:** ```bash mcpt create my-new-template ``` 2. **Test thoroughly:** ```bash mcpt deploy my-new-template mcpt i mcpt> tools my-new-template ``` 3. **Add documentation:** - Complete README.md - Usage examples - Configuration guide 4. **Submit pull request:** - Include template in `templates/` directory - Add tests - Update template registry ## Commercial Usage ### Can I use this commercially? Yes! The MCP Template Platform is open source under the MIT License, which allows commercial use. **Commercial Usage Rights:** - βœ… Use in commercial products - βœ… Modify and distribute - βœ… Private use - βœ… Commercial distribution **Requirements:** - Include license notice - No warranty provided ### Do you offer commercial support? Yes, commercial support is available: **Enterprise Support:** - Priority bug fixes - Custom template development - Training and consulting - SLA guarantees **Professional Services:** - Custom integration development - Architecture consulting - Team training - Production deployment assistance **Contact:** enterprise@dataeverything.ai ### Can I create paid templates? While the core platform is open source, you can: - Create proprietary templates for internal use - Offer template development services - Build commercial products using the platform - Provide support and consulting services The template ecosystem encourages both open source and commercial contributions. --- **Still have questions?** - πŸ“– Check the [full documentation](index.md) - πŸ’¬ Join our [community discussions](https://github.com/data-everything/mcp-server-templates/discussions) - πŸ› [Report issues](https://github.com/data-everything/mcp-server-templates/issues) - πŸ“§ Contact us: support@dataeverything.ai

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Data-Everything/mcp-server-templates'

If you have feedback or need assistance with the MCP directory API, please join our Discord server