Skip to main content
Glama

πŸ“ Scribe MCP Server

Tests Version License

Enterprise-grade documentation governance for AI-powered development β€” by Corta Labs

Drop-in ready β€’ 13+ specialized templates β€’ Zero-config SQLite β€’ Production-tested


✨ Update v2.1.1 (Diff Editor, Readable Output & ANSI Colors)

Scribe MCP 2.1.1 introduces foundational document lifecycle upgrades, including a fully automated YAML frontmatter engine with round-trip safety, canonical metadata defaults, and extensible schema support. Frontmatter is created on first edit if missing, auto-updates last_updated, and supports explicit overrides without breaking existing fields. These changes establish a metadata plane separate from document body content, enabling safe diff operations, deterministic header/TOC tooling, and template-driven document creation.

New: Enhanced Readable Output (Phase 1.5/1.6)

  • ANSI Color Support: Tool output now renders with colors in Claude Code/Codex - cyan boxes, green line numbers, bold titles

  • Green Line Numbers: Clean 1. content format with dot separator, matching Claude's native Read tool style

  • CallToolResult Fix: Workaround for Issue #9962 - returns TextContent-only for proper newline rendering

  • Config-Driven Colors: Enable/disable via use_ansi_colors: true in .scribe/config/scribe.yaml

  • 5-Char Line Padding: Consistent line number width for improved readability

Structured edits are now the default path: agents express intent, the server compiles and applies deterministic mutations, and diagnostics remain explicit. Structural actions no longer auto-heal doc targets; if a doc key is not registered, the action fails with DOC_NOT_FOUND rather than redirecting the write.

  • manage_docs now supports apply_patch (structured by default) and replace_range for precise edits.

  • apply_patch supports edit payloads in structured mode; patch_mode="unified" opts into raw unified diffs.

  • patch_source_hash enforces stale-source protection for patches.

  • Reminder system teaches scaffold-only replace_section, preferring structured/line edits.

  • New doc lifecycle actions: normalize_headers, generate_toc, create_doc, validate_crosslinks.

  • create_doc builds documents from content/body/snippets/sections; users do not supply Jinja. Multiline bodies are preserved. Use metadata.register_doc=true only when you want the new doc added to the project registry.

  • validate_crosslinks is read-only diagnostics (no write, no doc_updates log).

  • normalize_headers supports ATX headers with or without space and Setext (==== / ----), skipping fenced code blocks. Output is canonical ATX.

  • generate_toc uses GitHub-style anchors (NFKD normalization, ASCII folding, emoji removal, punctuation collapse, de-duped suffixes).

  • Structural actions validate doc keys against the registry and fail hard on unknown docs (no silent redirects).

  • read_file tool provides repo-scoped file reads with scan/chunk/page/search modes and provenance logging.

  • scribe_doctor reports repo root, config, plugin status, and vector readiness for faster diagnostics.

  • manage_docs now supports semantic search via action="search" with search_mode="semantic", including doc/log separation and doc_k/log_k overrides.

  • Vector indexing now prefers registry-managed docs only; log/rotated-log files are excluded from doc indexing.

  • Reindex supports --rebuild (clear index), --safe (low-thread fallback), and --wait-for-drain to block until embeddings are written.

Example (structured default):

{ "action": "apply_patch", "doc": "architecture", "edit": { "type": "replace_range", "start_line": 12, "end_line": 12, "content": "Updated line\n" } }

Example (unified diff mode, compiler output only):

{ "action": "apply_patch", "doc": "architecture", "patch": "<compiler output>", "patch_mode": "unified" }

πŸš€ Why Scribe MCP?

Scribe transforms how AI agents and developers maintain project documentation. Instead of scattered notes and outdated docs, Scribe provides bulletproof audit trails, automated template generation, and cross-project intelligence that keeps your entire development ecosystem in sync.

Perfect for:

  • πŸ€– AI Agent Teams - Structured workflows and quality grading

  • 🏒 Enterprise Teams - Audit trails and compliance documentation

  • πŸ‘¨β€πŸ’» Solo Developers - Automatic documentation that actually works

  • πŸ“š Research Projects - Structured logs and reproducible reports

Immediate Value:

  • βœ… 30-second setup - Drop into any repository and start logging

  • 🎯 18+ specialized templates - From architecture guides to bug reports

  • πŸ” Cross-project search - Find patterns across your entire codebase

  • πŸ“Š Agent report cards - Performance grading for AI workflows

  • πŸ›‘οΈ Bulletproof storage - Atomic operations with crash recovery

⚑ Quick Start

Get Scribe running in under 60 seconds (MCP-first, CLI optional):

1️⃣ Install Dependencies

# Clone and navigate to Scribe git clone <your-repo-url> cd scribe_mcp # Set up Python environment python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate # Install 16 production-ready dependencies pip install -r requirements.txt

2️⃣ Add Scribe MCP Server to Claude Code, Codex

  • Codex CLI registration example:

    codex mcp add scribe \ --env SCRIBE_STORAGE_BACKEND=sqlite \ -- bash -lc 'cd /home/path/to/scribe_mcp && exec python -m server'
  • Claude Code registration example:

    claude mcp add scribe \ --env SCRIBE_STORAGE_BACKEND=sqlite \ -- bash -lc 'cd /home/path/to/scribe_mcp && exec python -m server'

    For Global MCP

    claude mcp add scribe --scope user --env SCRIBE_STORAGE_BACKEND=sqlite -- bash -lc 'cd /home/path/to/scribe_mcp && exec python -m server'

Once connected from Claude / Codex MCP:

  • Use set_project to register/select a project and bootstrap dev_plan docs (pass root=/abs/path/to/repo to work in any repo).

  • Use append_entry for all logging (single/bulk).

  • Use manage_docs for architecture/phase/checklist updates. 2.1.1 introduces diff edits.

  • Use read_file for safe, auditable file reads (scan/chunk/page/search).

  • Use scribe_doctor for readiness checks (repo root, config, vector index status).

  • Use read_recent to resume context after compaction.

Automatic log routing (BUG / SECURITY)

  • status=bug (or a bug emoji) will also write to BUG_LOG.md when required meta is present (severity, component, status).

  • Security events can also tee to SECURITY_LOG.md (example: use a security emoji, or --meta security_event=true,impact=...,status=...).

  • If required meta is missing, Scribe returns a teaching reminder instead of inventing data.

3️⃣ (Optional) Manual CLI Logging

For shell workflows or quick one-off logs, you can call the MCP-aligned CLI:

# From the scribe_mcp directory or MCP_SPINE root python -m scribe_mcp.scripts.scribe "πŸš€ My project is ready!" --status success --emoji πŸŽ‰

Under the hood this uses set_project + append_entry, so manual usage stays in sync with the registry, SQLite mirror, and reminder system.


🎯 Try These Examples

Project Management:

# Log project milestones python -m scribe_mcp.scripts.scribe "Completed authentication module" --status success --meta component=auth,tests=47 # Track bugs and issues python -m scribe_mcp.scripts.scribe "Fixed JWT token expiry bug" --status bug --meta severity=high,component=security

Research Workflows:

# Document research findings python -m scribe_mcp.scripts.scribe "Discovered performance bottleneck in database queries" --status info --meta research=true,impact=high

Team Collaboration:

# List all projects python -m scribe_mcp.scripts.scribe --list-projects # Switch between projects python -m scribe_mcp.scripts.scribe "Starting new feature work" --project frontend --status plan

πŸ› οΈ Installation Options

Prerequisites

  • Python 3.11+ - Modern Python with async support

  • pip - Standard Python package manager

  • Optional: PostgreSQL for team deployments (SQLite works out of the box)

Storage Backends

πŸ—„οΈ SQLite (Default - Zero Config)

  • Perfect for solo developers and small teams

  • No setup required - just run and go

  • Automatic database creation and management

🐘 PostgreSQL (Enterprise)

  • Ideal for large teams and production deployments

  • Set environment variables before starting:

    export SCRIBE_STORAGE_BACKEND=postgres export SCRIBE_DB_URL=postgresql://user:pass@host:port/database

MCP Integration

In all examples below, REPO_ROOT means the directory that contains the scribe_mcp package (i.e., where scribe_mcp/server.py lives). In your personal setup this might be .../MCP_SPINE, but in the public repo it will typically just be the cloned scribe_mcp directory.

For Claude Desktop (JSON config):

{ "mcpServers": { "scribe": { // Run from REPO_ROOT so `scribe_mcp` imports resolve "command": "bash", "args": [ "-lc", "cd /absolute/path/to/REPO_ROOT && exec python -m scribe_mcp.server" ], "env": { // Optional: override storage backend; SQLite is default "SCRIBE_STORAGE_BACKEND": "sqlite" } } } }

For Codex / Claude Code CLI:

# From anywhere; codex will remember this configuration codex mcp add scribe \ --env SCRIBE_STORAGE_BACKEND=sqlite \ -- bash -lc 'cd /absolute/path/to/REPO_ROOT && exec python -m scribe_mcp.server'

Notes:

  • We intentionally do not bake a per-repo root into the MCP config. Scribe is multi-repo: switch repos by calling set_project(name=..., root=/abs/path/to/repo) (no MCP re-register needed).

  • The same bash -lc "cd REPO_ROOT && python -m scribe_mcp.server" pattern works for any MCP client that expects a stdio server command.


🌐 Using Scribe Outside This Repo

You can run Scribe from any codebase (not just MCP_SPINE) by pointing it at that project’s root:

  1. Start the MCP server from the Scribe codebase (once), then use set_project(..., root=/abs/path/to/your/repo) to target any repository.

  2. Optional env vars:

    • SCRIBE_STATE_PATH=/abs/path/to/state.json (per-user; must be writable)

    • SCRIBE_STORAGE_BACKEND=postgres and SCRIBE_DB_URL=postgresql://... if you want Postgres.

  3. Ensure PYTHONPATH includes the parent of scribe_mcp so imports work when launched from elsewhere.


🧠 Project Registry & Lifecycle (High-Level)

Scribe includes a SQLite-backed Project Registry that tracks every project’s lifecycle and documentation state:

  • Lifecycle states: planning, in_progress, blocked, complete, archived, abandoned.

  • Core hooks:

    • set_project – bootstraps docs (ARCHITECTURE_GUIDE, PHASE_PLAN, CHECKLIST, PROGRESS_LOG) and ensures a registry row exists.

    • append_entry – writes progress logs, updates activity metrics, and can auto‑promote planning β†’ in_progress once docs + first entry exist.

    • manage_docs – applies atomic doc updates and records baseline/current hashes and doc‑hygiene flags in the registry.

    • list_projects – surfaces registry data (status, timestamps, counts, tags, meta.activity, meta.docs.flags) with filters like status, tags, and order_by.

At a glance, you can:

  • See which projects are fresh, stale, or long inactive.

  • Detect when architecture/phase/checklist docs are still at template state.

  • Spot drift between implementation logs and documentation.

For full technical details, see docs/whitepapers/scribe_mcp_whitepaper.md.


πŸ“œ License & Commercial Use

Scribe MCP is source-available and free to use for:

  • Individual developers

  • Open-source contributors

  • Researchers and educational use

  • Small teams and small businesses that:

    • Have fewer than 25 employees, and

    • Generate less than $1,000,000 USD in annual revenue, and

    • Are not selling, hosting, or packaging Scribe MCP (or derivatives) as part of a paid product or service.

You may not use Scribe MCP under the community license if:

  • Your organization exceeds the employee or revenue limits above, or

  • You embed Scribe MCP into a paid SaaS, internal platform, or commercial agent/orchestration product.

For enterprise or large-scale commercial use, contact licensing@cortalabs.com to obtain a commercial license.

Details:

  • Current code is licensed under the Scribe MCP License (Community + Small Business License) in LICENSE.

  • Earlier snapshots were MIT-licensed; see LICENSE_HISTORY.md for historical licensing context.

Notes:

  • .env is auto-loaded on startup when present (via python-dotenv); shell exports/direnv still work the same.

  • Overlap checks only block true path collisions (same progress_log/docs_dir). Sharing one repo root with many dev_plan folders is supported.


🎨 Template System Showcase

Scribe includes 13+ specialized templates that auto-generate professional documentation:

πŸ“‹ Document Templates

  • πŸ“ Architecture Guides - System design and technical blueprints

  • πŸ“… Phase Plans - Development roadmaps with milestones

  • βœ… Checklists - Verification ledgers with acceptance criteria

  • πŸ”¬ Research Reports - Structured investigation documentation

  • πŸ› Bug Reports - Automated issue tracking with indexing

  • πŸ“Š Agent Report Cards - Performance grading and quality metrics

  • πŸ“ Progress Logs - Append-only audit trails with UTC timestamps

  • πŸ”’ Security Logs - Compliance and security event tracking

πŸš€ Template Features

  • πŸ”’ Security Sandboxing - Jinja2 templates run in restricted environments

  • πŸ“ Template Inheritance - Create custom template families

  • 🎯 Smart Discovery - Project β†’ Repository β†’ Built-in template hierarchy (precedence: .scribe/templates β†’ repo custom β†’ project templates β†’ packs β†’ built-ins)

  • ⚑ Atomic Generation - Bulletproof template creation with integrity verification

For a deeper dive into available variables and expected metadata per template, see docs/TEMPLATE_VARIABLES.md.

Example: Generate Architecture Guide

# Auto-generate a complete architecture document python -m scribe_mcp.scripts.scribe "Generated architecture guide for new project" --status success --meta template=architecture,auto_generated=true

πŸ’» CLI Power Tools

Scribe's command-line interface (386 lines of pure functionality) gives you complete control:

🎯 Core Commands

# List all available projects python -m scribe_mcp.scripts.scribe --list-projects # Log with rich metadata python -m scribe_mcp.scripts.scribe "Fixed critical bug" \ --status success \ --emoji πŸ”§ \ --meta component=auth,tests=12,severity=high # Dry run to preview entries python -m scribe_mcp.scripts.scribe "Test message" --dry-run # Switch between projects python -m scribe_mcp.scripts.scribe "Starting frontend work" \ --project mobile_app \ --status plan

🎨 Rich Features

  • 🎭 Emoji Support - Built-in emoji mapping for all status types

  • πŸ“Š Metadata Tracking - Rich key=value metadata for organization

  • πŸ” Multiple Log Types - Progress, bugs, security, and custom logs

  • πŸ“… Timestamp Control - Override timestamps for bulk imports

  • 🎯 Project Discovery - Automatic project configuration detection

Status Types & Emojis

  • info ℹ️ - General information and updates

  • success βœ… - Completed tasks and achievements

  • warn ⚠️ - Warning messages and cautions

  • error ❌ - Errors and failures

  • bug 🐞 - Bug reports and issues

  • plan πŸ“‹ - Planning and roadmap entries


πŸ” Enterprise Features

πŸ“Š Agent Report Cards

Performance grading infrastructure for AI workflows:

  • Quality metrics tracking and trend analysis

  • Performance levels with UPSERT operations

  • Automated agent evaluation and reporting

πŸ”’ Security & Compliance

  • πŸ›‘οΈ Security Sandboxing - Restricted Jinja2 environments with 22+ built-in controls

  • πŸ“‹ Audit Trails - Complete change tracking with metadata

  • πŸ” Access Control - Path validation and input sanitization

  • πŸ“Š Compliance Reporting - Structured logs for regulatory requirements

Phase 4 Enhanced Search capabilities:

  • πŸ” Cross-Project Validation - Find patterns across your entire codebase

  • πŸ“Š Relevance Scoring - 0.0-1.0 quality filtering

  • 🎯 Code Reference Verification - Validate referenced code exists

  • πŸ“… Temporal Filtering - Search by time ranges ("last_30d", "last_7d")

πŸ’Ύ Bulletproof Storage

  • πŸ—„οΈ Multi-Backend Support - SQLite (zero-config) + PostgreSQL (enterprise)

  • ⚑ Atomic Operations - Temp-file-then-rename with fsync guarantees

  • πŸ”„ Write-Ahead Logging - Bulletproof crash recovery with journaling

  • βœ… Integrity Verification - Automatic corruption detection and recovery


🧠 Intelligent Reminders

Scribe keeps your documentation in sync with intelligent context awareness:

πŸ“‹ Smart Reminders

Every MCP tool response includes contextual reminders about:

  • πŸ“… Stale Documentation - When architecture docs need updates

  • ⏰ Overdue Logs - Gentle nudges to maintain progress tracking

  • 🎯 Project Context - Active project status and recent activity

  • πŸ”„ Drift Detection - When implementation deviates from plans

Reminders are throttled with a short cooldown per (repo_root, agent_id) so you see what matters without constant repetition. If an agent gets confused, you can clear cooldowns with set_project(reset_reminders=true).

If you call a project-bound tool without selecting a project, Scribe returns a β€œlast known project” hint (including last access time) to help you recover quickly.

βš™οΈ Customization

{ "name": "my_project", "defaults": { "reminder": { "tone": "friendly", "log_warning_minutes": 15, "log_urgent_minutes": 30, "severity_weights": {"warning": 7, "urgent": 10} } } }

🌍 Environment Variables

  • SCRIBE_REMINDER_IDLE_MINUTES - Work session reset timeout (default: 45)

  • SCRIBE_REMINDER_WARMUP_MINUTES - Grace period after resuming (default: 5)

  • SCRIBE_REMINDER_DEFAULTS - JSON configuration for all projects

  • SCRIBE_REMINDER_CACHE_PATH - Optional path for reminder cooldown cache (default: data/reminder_cooldowns.json)


πŸ—οΈ Project Structure

scribe_mcp/ # πŸ›οΈ Main Scribe MCP server β”œβ”€β”€ πŸ“ config/ β”‚ β”œβ”€β”€ πŸ“ projects/ # Per-project configurations β”‚ └── πŸ“„ mcp_config.json # Sample MCP configuration β”œβ”€β”€ πŸ“ docs/ # πŸ“– Server docs (whitepapers, guides) β”œβ”€β”€ πŸ“ templates/ # 🎨 Jinja2 template system β”‚ β”œβ”€β”€ πŸ“ documents/ # 13+ specialized templates β”‚ β”œβ”€β”€ πŸ“ fragments/ # Reusable template pieces β”‚ └── πŸ“ custom/ # Your custom templates β”œβ”€β”€ πŸ“ tools/ # πŸ”§ MCP tool implementations β”œβ”€β”€ πŸ“ storage/ # πŸ’Ύ Multi-backend storage layer β”œβ”€β”€ πŸ“ scripts/ # πŸ’» CLI utilities β”œβ”€β”€ πŸ“ tests/ # πŸ§ͺ Comprehensive test suite └── πŸ“„ server.py # πŸš€ MCP server entrypoint

Per-repo output location (dev plans + logs)

  • Default: <repo>/.scribe/docs/dev_plans/<project_slug>/...

  • Back-compat: if <repo>/docs/dev_plans/<project_slug> exists, Scribe keeps using it.

  • Override: set SCRIBE_DEV_PLANS_BASE (example: docs/dev_plans) to force a different base.


πŸ§ͺ Testing & Quality

Comprehensive testing infrastructure with 79+ test files:

πŸ§ͺ Run Tests

# Run all functional tests (69 tests) pytest # Run performance tests with file size benchmarks pytest -m performance # Run specific test categories pytest tests/test_tools.py pytest tests/test_storage.py

βœ… Quality Assurance

  • πŸ”¬ Functional Testing - 69 comprehensive tests covering all core functionality

  • ⚑ Performance Testing - Optimized benchmarks for file operations

  • πŸ›‘οΈ Security Testing - Template sandboxing and access control validation

  • πŸ”„ Integration Testing - MCP server protocol compliance verification

πŸš€ Smoke Test

# Quick MCP server validation python scripts/test_mcp_server.py

πŸ’‘ Real-World Use Cases

πŸ€– AI Agent Teams

Structured workflows for AI development:

# Research phase python -m scribe_mcp.scripts.scribe "Research completed: authentication patterns" --status info --meta phase=research,confidence=0.9 # Architecture phase python -m scribe_mcp.scripts.scribe "Architecture guide updated with auth design" --status success --meta phase=architecture,sections=5 # Implementation phase python -m scribe_mcp.scripts.scribe "JWT authentication implemented" --status success --meta phase=implementation,tests=47,coverage=95%

🏒 Enterprise Documentation

Compliance and audit trails:

# Security events python -m scribe_mcp.scripts.scribe "Security audit completed - all controls verified" --log security --status success --meta auditor=external,findings=0 # Change management python -m scribe_mcp.scripts.scribe "Production deployment completed" --status success --meta version=v2.1.0,rollback_available=true

πŸ“š Research Projects

Structured research documentation:

# Research findings python -m scribe_mcp.scripts.scribe "Performance bottleneck identified in database queries" --status info --meta research=true,impact=high,evidence=query_analysis # Experiment results python -m scribe_mcp.scripts.scribe "A/B test results: new algorithm 23% faster" --status success --meta experiment=performance_optimization,improvement=23%

πŸ”§ Troubleshooting

Common Issues & Solutions

🚨 MCP SDK Missing

# Install the MCP Python SDK pip install mcp

πŸ”§ No Tools Returned

# Ensure all modules are properly imported # Check that your virtual environment is active source .venv/bin/activate # Verify tool imports python -c "from scribe_mcp.tools import *; print('All tools loaded')"

πŸ—„οΈ SQLite Permission Issues

# Check your state/db paths are writable echo $SCRIBE_STATE_PATH ls -la $(dirname "$SCRIBE_STATE_PATH") # Check the target repo is writable (Scribe writes under <repo>/.scribe/ by default) ls -la /abs/path/to/your/repo ls -la /abs/path/to/your/repo/.scribe || true

🐍 Python Path Issues

# Ensure you're running from the correct directory # Run from MCP_SPINE parent directory, not inside scribe_mcp/ pwd # Should show .../MCP_SPINE/ # Test import path python -c "import sys; sys.path.insert(0, '.'); from scribe_mcp.config.settings import settings; print('βœ… Imports working')"

⚑ Server Not Starting

# Check required dependencies pip install -r requirements.txt # Verify server startup with timeout timeout 5 python -m scribe_mcp.server || echo "βœ… Server starts correctly"

Getting Help

  • πŸ“– Documentation: Check docs/whitepapers/scribe_mcp_whitepaper.md for comprehensive technical details

  • πŸ§ͺ Test Suite: Run pytest to verify system functionality

  • πŸ“‹ Project Templates: Use --list-projects to see available configurations

  • πŸ” Smoke Test: Run python scripts/test_mcp_server.py for MCP validation


🀝 Contributing

We welcome contributions! Here's how to get started:

πŸ§ͺ Development Workflow

# 1. Run the test suite pytest # 2. Verify MCP server functionality python scripts/test_mcp_server.py # 3. Test your changes python -m scribe_mcp.scripts.scribe "Testing new feature" --dry-run # 4. Log your contribution python -m scribe_mcp.scripts.scribe "Added new feature: description" --status success --meta contribution=true,feature_type=enhancement

πŸ“‹ Development Guidelines

  • βœ… Test Coverage: All new features must include tests

  • πŸ“ Documentation: Update relevant documentation sections

  • πŸ”§ Integration: Ensure MCP server compatibility

  • πŸ›‘οΈ Security: Follow security best practices for templates and inputs

πŸš€ Quality Standards

  • πŸ§ͺ 69+ functional tests must pass

  • ⚑ Performance benchmarks for file operations

  • πŸ”’ Security validation for template sandboxing

  • πŸ“‹ MCP protocol compliance verification


πŸ“š Further Reading

πŸ“– Technical Documentation

🌟 Advanced Features

  • πŸ€– Claude Code Integration - Structured workflows and subagent coordination

  • πŸ“Š Agent Report Cards - Performance grading and quality metrics

  • πŸ” Vector Search - FAISS integration for semantic search

  • πŸ” Security Framework - Comprehensive access control and audit trails

πŸš€ Production Deployment

  • 🐘 PostgreSQL Setup - Enterprise-scale deployment guide

  • πŸ“ˆ Monitoring - Performance tracking and alerting

  • πŸ”„ Backup & Recovery - Data protection strategies

  • 🌐 Multi-tenant - Organizational deployment patterns


πŸ™ Acknowledgments

Built with passion for better documentation and AI-human collaboration. Special thanks to:

  • The MCP protocol team for the standardized AI tool interface

  • Jinja2 for the powerful and secure templating system

  • Our early adopters for invaluable feedback and feature suggestions


πŸš€ Ready to transform your documentation?

Start Logging β€’ Explore Templates β€’ Read Whitepaper

Join thousands of developers and AI teams using Scribe for bulletproof documentation governance

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/CortaLabs/scribe_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server