Skip to main content
Glama

analyze_vacuum_requirements

Analyze PostgreSQL database vacuum requirements to detect bloat and generate maintenance recommendations for optimal performance.

Instructions

Comprehensive vacuum analysis with maintenance recommendations and bloat detection

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault

No arguments

Implementation Reference

  • Core handler implementing the vacuum analysis logic: gathers summary statistics, analyzes table bloat, autovacuum configuration, vacuum performance, generates maintenance and configuration recommendations, identifies critical issues, and formats the results as text.
    async def analyze_vacuum_requirements(self) -> str: """Perform comprehensive vacuum analysis and return structured results.""" try: logger.info("Starting comprehensive vacuum analysis...") analysis_results = { "summary": {}, "bloat_analysis": {}, "autovacuum_analysis": {}, "vacuum_performance": {}, "maintenance_recommendations": [], "critical_issues": [], "configuration_recommendations": [], } # Get basic statistics await self._get_vacuum_summary(analysis_results) # Analyze table bloat await self._analyze_table_bloat(analysis_results) # Analyze autovacuum configuration await self._analyze_autovacuum_config(analysis_results) # Analyze vacuum performance await self._analyze_vacuum_performance(analysis_results) # Generate maintenance recommendations await self._generate_maintenance_recommendations(analysis_results) # Check for critical issues await self._identify_critical_issues(analysis_results) # Generate configuration recommendations await self._generate_configuration_recommendations(analysis_results) logger.info("Vacuum analysis completed successfully") return self._format_as_text(analysis_results) except Exception as e: logger.error(f"Error in vacuum analysis: {e}") error_result = { "error": f"Vacuum analysis failed: {e!s}", "summary": {}, "bloat_analysis": {}, "autovacuum_analysis": {}, "vacuum_performance": {}, "maintenance_recommendations": [], "critical_issues": [], "configuration_recommendations": [], } return self._format_as_text(error_result)
  • MCP tool registration and top-level handler for 'analyze_vacuum_requirements'. Instantiates VacuumAnalysisTool and delegates to its analyze_vacuum_requirements method, handling errors and formatting the response.
    @mcp.tool(description="Comprehensive vacuum analysis with maintenance recommendations and bloat detection") async def analyze_vacuum_requirements() -> ResponseType: """Analyze database vacuum requirements with comprehensive recommendations for maintenance.""" try: sql_driver = await get_sql_driver() vacuum_tool = VacuumAnalysisTool(sql_driver) # Perform comprehensive vacuum analysis result = await vacuum_tool.analyze_vacuum_requirements() return format_text_response(result) except Exception as e: logger.error(f"Error analyzing vacuum requirements: {e}") return format_error_response(str(e))

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Cloud-Thinker-AI/postgres-mcp-pro-plus'

If you have feedback or need assistance with the MCP directory API, please join our Discord server