Skip to main content
Glama

mcp-server-circleci

Official
inputSchema.ts1.37 kB
import { z } from 'zod'; import { defaultModel, defaultTemperature, PromptOrigin, PromptWorkbenchToolName, } from '../shared/constants.js'; export const recommendPromptTemplateTestsInputSchema = z.object({ template: z .string() .describe( `The prompt template to be tested. Use the \`promptTemplate\` from the latest \`${PromptWorkbenchToolName.create_prompt_template}\` tool output (if available).`, ), contextSchema: z .record(z.string(), z.string()) .describe( `The context schema that defines the expected input parameters for the prompt template. Use the \`contextSchema\` from the latest \`${PromptWorkbenchToolName.create_prompt_template}\` tool output.`, ), promptOrigin: z .nativeEnum(PromptOrigin) .describe( `The origin of the prompt template, indicating where it came from (e.g. "${PromptOrigin.codebase}" or "${PromptOrigin.requirements}").`, ), model: z .string() .default(defaultModel) .describe( `The model to use for generating actual prompt outputs for testing. Defaults to ${defaultModel}.`, ), temperature: z .number() .default(defaultTemperature) .describe( `The temperature of the prompt template. Explicitly specify the temperature if it can be inferred from the codebase. Otherwise, defaults to ${defaultTemperature}.`, ), });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/CircleCI-Public/mcp-server-circleci'

If you have feedback or need assistance with the MCP directory API, please join our Discord server