Skip to main content
Glama

AI Tutoring RAG System

rag_server.py1.27 kB
import json from datetime import datetime from rag import LearningContext, MemoryType, initialize_tutoring_rag if __name__ == "__main__": rag = initialize_tutoring_rag() learning_context = LearningContext( student_id="student_123", subject="mathematics", topic="quadratic_equations", difficulty_level=7, learning_style="visual", timestamp=datetime.now(), content=( "Student successfully solved quadratic equation using the quadratic formula " "after struggling with factoring method" ), memory_type=MemoryType.SUCCESS_MILESTONE, metadata={"method_used": "quadratic_formula", "attempts": 3}, ) doc_id = rag.store_learning_interaction(learning_context) print(f"Stored interaction: {doc_id}") response = rag.generate_personalized_response( student_id="student_123", current_question="How do I solve x² + 5x + 6 = 0?", subject="mathematics", topic="quadratic_equations", ) print(f"Personalized response: {response}") trajectory = rag.analyze_learning_trajectory( student_id="student_123", subject="mathematics" ) print(f"Learning trajectory: {json.dumps(trajectory, indent=2)}")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Chukwuebuka-2003/ebuka_mcps'

If you have feedback or need assistance with the MCP directory API, please join our Discord server