DICOM MCP Server

by ChristianHinge
Verified
# dicom-mcp: A DICOM Model Context Protocol Server This repo is part of a blog post: [Agentic Healthcare LLMs](https://www.christianhinge.com/projects/dicom-mcp/) ## Overview A Model Context Protocol server for DICOM (Digital Imaging and Communications in Medicine) interactions. This server provides tools to query and interact with DICOM servers, enabling Large Language Models to access and analyze medical imaging metadata. dicom-mcp allows AI assistants to query patient information, studies, series, and instances from DICOM servers using standard DICOM networking protocols. It also supports extracting text from encapsulated PDF documents stored in DICOM format, making it possible to analyze clinical reports. It's built on pynetdicom and follows the Model Context Protocol specification. ### Tools 1. `list_dicom_nodes` - Lists all configured DICOM nodes and calling AE titles - Inputs: None - Returns: Current node, available nodes, current calling AE title, and available calling AE titles 2. `switch_dicom_node` - Switches to a different configured DICOM node - Inputs: - `node_name` (string): Name of the node to switch to - Returns: Success message 3. `switch_calling_aet` - Switches to a different configured calling AE title - Inputs: - `aet_name` (string): Name of the calling AE title to switch to - Returns: Success message 4. `verify_connection` - Tests connectivity to the configured DICOM node using C-ECHO - Inputs: None - Returns: Success or failure message with details 5. `query_patients` - Search for patients matching specified criteria - Inputs: - `name_pattern` (string, optional): Patient name pattern (can include wildcards) - `patient_id` (string, optional): Patient ID - `birth_date` (string, optional): Patient birth date (YYYYMMDD) - `attribute_preset` (string, optional): Preset level of detail (minimal, standard, extended) - `additional_attributes` (string[], optional): Additional DICOM attributes to include - `exclude_attributes` (string[], optional): DICOM attributes to exclude - Returns: Array of matching patient records 6. `query_studies` - Search for studies matching specified criteria - Inputs: - `patient_id` (string, optional): Patient ID - `study_date` (string, optional): Study date or range (YYYYMMDD or YYYYMMDD-YYYYMMDD) - `modality_in_study` (string, optional): Modalities in study - `study_description` (string, optional): Study description (can include wildcards) - `accession_number` (string, optional): Accession number - `study_instance_uid` (string, optional): Study Instance UID - `attribute_preset` (string, optional): Preset level of detail - `additional_attributes` (string[], optional): Additional DICOM attributes to include - `exclude_attributes` (string[], optional): DICOM attributes to exclude - Returns: Array of matching study records 7. `query_series` - Search for series within a study - Inputs: - `study_instance_uid` (string): Study Instance UID (required) - `modality` (string, optional): Modality (e.g., "CT", "MR") - `series_number` (string, optional): Series number - `series_description` (string, optional): Series description - `series_instance_uid` (string, optional): Series Instance UID - `attribute_preset` (string, optional): Preset level of detail - `additional_attributes` (string[], optional): Additional DICOM attributes to include - `exclude_attributes` (string[], optional): DICOM attributes to exclude - Returns: Array of matching series records 8. `query_instances` - Search for instances within a series - Inputs: - `series_instance_uid` (string): Series Instance UID (required) - `instance_number` (string, optional): Instance number - `sop_instance_uid` (string, optional): SOP Instance UID - `attribute_preset` (string, optional): Preset level of detail - `additional_attributes` (string[], optional): Additional DICOM attributes to include - `exclude_attributes` (string[], optional): DICOM attributes to exclude - Returns: Array of matching instance records 9. `get_attribute_presets` - Lists available attribute presets for queries - Inputs: None - Returns: Dictionary of available presets and their attributes by level 10. `retrieve_instance` - Retrieves a specific DICOM instance and saves it to the local filesystem - Inputs: - `study_instance_uid` (string): Study Instance UID - `series_instance_uid` (string): Series Instance UID - `sop_instance_uid` (string): SOP Instance UID - `output_directory` (string, optional): Directory to save the retrieved instance to (default: "./retrieved_files") - Returns: Dictionary with information about the retrieval operation 11. `extract_pdf_text_from_dicom` - Retrieves a DICOM instance containing an encapsulated PDF and extracts its text content - Inputs: - `study_instance_uid` (string): Study Instance UID - `series_instance_uid` (string): Series Instance UID - `sop_instance_uid` (string): SOP Instance UID - Returns: Dictionary with extracted text information and status ## Installation ### Prerequisites - Python 3.12 or higher - A DICOM server to connect to (e.g., Orthanc, dcm4chee, etc.) ### Using pip Install via pip: ```bash pip install dicom-mcp ``` ## Configuration dicom-mcp requires a YAML configuration file that defines the DICOM nodes and calling AE titles. Create a configuration file with the following structure: ```yaml # DICOM nodes configuration nodes: orthanc: host: "localhost" port: 4242 ae_title: "ORTHANC" description: "Local Orthanc DICOM server" clinical: host: "pacs.hospital.org" port: 11112 ae_title: "CLIN_PACS" description: "Clinical PACS server" # Local calling AE titles calling_aets: default: ae_title: "MCPSCU" description: "Default calling AE title" modality: ae_title: "MODALITY" description: "Simulating a modality" # Currently selected node current_node: "orthanc" # Currently selected calling AE title current_calling_aet: "default" ``` ## Usage ### Command Line Run the server using the script entry point: ```bash dicom-mcp /path/to/configuration.yaml ``` If using uv: ```bash uv run dicom-mcp /path/to/configuration.yaml ``` ### Configuration with Claude Desktop Add this to your `claude_desktop_config.json`: ```json "mcpServers": { "dicom": { "command": "uv", "args": ["--directory", "/path/to/dicom-mcp", "run", "dicom-mcp", "/path/to/configuration.yaml"] } } ``` ### Usage with Zed Add to your Zed settings.json: ```json "context_servers": [ "dicom-mcp": { "command": { "path": "uv", "args": ["--directory", "/path/to/dicom-mcp", "run", "dicom-mcp", "/path/to/configuration.yaml"] } } ], ``` ## Example Queries ### List available DICOM nodes ```python list_dicom_nodes() ``` ### Switch to a different node ```python switch_dicom_node(node_name="clinical") ``` ### Switch to a different calling AE title ```python switch_calling_aet(aet_name="modality") ``` ### Verify connection ```python verify_connection() ``` ### Search for patients ```python # Search by name pattern (using wildcard) patients = query_patients(name_pattern="SMITH*") # Search by patient ID patients = query_patients(patient_id="12345678") # Get detailed information patients = query_patients(patient_id="12345678", attribute_preset="extended") ``` ### Search for studies ```python # Find all studies for a patient studies = query_studies(patient_id="12345678") # Find studies within a date range studies = query_studies(study_date="20230101-20231231") # Find studies by modality studies = query_studies(modality_in_study="CT") ``` ### Search for series in a study ```python # Find all series in a study series = query_series(study_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.1") # Find series by modality and description series = query_series( study_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.1", modality="CT", series_description="CHEST*" ) ``` ### Search for instances in a series ```python # Find all instances in a series instances = query_instances(series_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.2") # Find a specific instance by number instances = query_instances( series_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.2", instance_number="1" ) ``` ### Retrieve a DICOM instance ```python # Retrieve a specific instance result = retrieve_instance( study_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.1", series_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.2", sop_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.3", output_directory="./dicom_files" ) ``` ### Extract text from a DICOM encapsulated PDF ```python # Extract text from an encapsulated PDF result = extract_pdf_text_from_dicom( study_instance_uid="1.2.840.10008.5.1.4.1.1.104.1.1", series_instance_uid="1.2.840.10008.5.1.4.1.1.104.1.2", sop_instance_uid="1.2.840.10008.5.1.4.1.1.104.1.3" ) ``` ## Debugging You can use the MCP inspector to debug the server: ```bash npx @modelcontextprotocol/inspector uv --directory /path/to/dicom-mcp run dicom-mcp /path/to/configuration.yaml ``` ## Development ### Setup Development Environment 1. Clone the repository: ```bash git clone https://github.com/yourusername/dicom-mcp.git cd dicom-mcp ``` 2. Create a virtual environment: ```bash python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate ``` 3. Install dependencies: ```bash pip install -e . ``` ### Running Tests The tests require a running Orthanc server. You can start one using Docker: ```bash cd tests docker-compose up -d ``` Then run the tests: ```bash pytest tests/test_dicom_mcp.py ``` To test PDF extraction functionality: ```bash pytest tests/test_dicom_pdf.py ``` ### Project Structure - `src/dicom_mcp/`: Main package - `__init__.py`: Package initialization - `__main__.py`: Entry point - `server.py`: MCP server implementation - `dicom_client.py`: DICOM client implementation - `attributes.py`: DICOM attribute presets - `config.py`: Configuration management with Pydantic ## License This project is licensed under the MIT License - see the LICENSE file for details. ## Acknowledgments - Built on [pynetdicom](https://github.com/pydicom/pynetdicom) - Follows the [Model Context Protocol](https://modelcontextprotocol.io) specification - Uses [PyPDF2](https://pythonhosted.org/PyPDF2/) for PDF text extraction