Skip to main content
Glama
INTEGRATION_STEPS.md•4.78 kB
# Gemini MCP Server Integration Guide ## Current Status āœ… Your integration is **95% complete**! Here's what you have: - āœ… Frontend React app with complete chat interface - āœ… API service configured for MCP protocol - āœ… Gemini MCP server with all endpoints - āœ… Database integration with SQLAlchemy - āœ… Authentication and rate limiting middleware ## Step 1: Deploy the Gemini MCP Server ### Option A: Railway Deployment (Recommended) 1. **Create Railway Account** ```bash # Install Railway CLI npm install -g @railway/cli # Login to Railway railway login ``` 2. **Deploy from the gemini-mcp-server folder** ```bash cd gemini-mcp-server railway deploy ``` 3. **Set Environment Variables in Railway Dashboard** - `GEMINI_API_KEY`: Your Google Gemini API key - `DATABASE_URL`: Will be auto-generated by Railway - `MCP_AUTH_TOKEN`: Create a secure token (e.g., `your-secure-token-2024`) ### Option B: Render/Heroku Deployment Use the provided `Dockerfile` in the gemini-mcp-server folder. ## Step 2: Get Google Gemini API Key (Free) 1. Visit [Google AI Studio](https://makersuite.google.com/app/apikey) 2. Create a new API key 3. Copy the key for deployment ## Step 3: Update Frontend Environment Variables Create/update `.env.local` in your root directory: ```env # MCP Server Configuration VITE_API_URL=https://your-railway-app.up.railway.app VITE_MCP_AUTH_TOKEN=your-secure-token-2024 # Google OAuth (if using) VITE_GOOGLE_CLIENT_ID=your-google-client-id ``` ## Step 4: Initialize the Database After deployment, run the database initialization: ```bash # SSH into your Railway deployment or run locally cd gemini-mcp-server python init_db.py ``` ## Step 5: Test the Integration 1. **Test MCP Server Health** ```bash curl https://your-railway-app.up.railway.app/mcp/health ``` 2. **Test from Frontend** - Start your frontend: `npm run dev` - Open the chat interface - Send a test message ## Step 6: Production Deployment ### Frontend Deployment (Vercel/Netlify) 1. **Build the frontend** ```bash npm run build ``` 2. **Deploy to Vercel** ```bash # Install Vercel CLI npm install -g vercel # Deploy vercel ``` 3. **Set Environment Variables in Vercel** - Copy all environment variables from `.env.local` ## Architecture Overview ``` Frontend (React/TypeScript) ↓ HTTP Requests MCP Server (FastAPI + Gemini) ↓ Database Operations PostgreSQL (Railway) ↓ AI Processing Google Gemini API ``` ## API Endpoints Available Your frontend can use these MCP endpoints: - `POST /mcp/process` - Single message processing - `POST /mcp/batch` - Batch message processing - `GET /mcp/health` - Health check - `GET /mcp/capabilities` - Server capabilities - `GET /mcp/version` - MCP version info ## Features Working Out of the Box āœ… Real-time chat interface āœ… Google Gemini AI responses āœ… Message history storage āœ… User authentication integration āœ… Rate limiting and security āœ… Error handling and recovery āœ… Responsive design āœ… Multi-language support ## Next Steps After Integration 1. **Customize AI Behavior** - Modify prompts in `process_with_gemini()` function - Add custom context providers - Implement domain-specific knowledge 2. **Add Advanced Features** - File upload handling - Voice messages - Typing indicators - Message reactions 3. **Monitoring & Analytics** - Add logging service (Sentry) - Implement usage analytics - Set up monitoring dashboards ## Troubleshooting ### Common Issues 1. **CORS Errors** - Check CORS configuration in MCP server - Ensure frontend domain is allowed 2. **Authentication Errors** - Verify `VITE_MCP_AUTH_TOKEN` matches server token - Check header format in API requests 3. **Gemini API Errors** - Verify API key is correctly set - Check API quota and limits ### Testing Commands ```bash # Test MCP server locally cd gemini-mcp-server python -m uvicorn app:app --reload # Test frontend locally npm run dev # Test API connection curl -X POST "http://localhost:8000/mcp/process" \ -H "Content-Type: application/json" \ -H "x-mcp-auth: test-token" \ -d '{"query": "Hello", "user_id": "test"}' ``` ## Security Checklist - [ ] Use HTTPS in production - [ ] Implement proper MCP authentication - [ ] Set up rate limiting - [ ] Configure CORS for specific domains - [ ] Use environment variables for secrets - [ ] Enable database connection pooling - [ ] Set up monitoring and alerts ## Performance Optimization - [ ] Enable Redis for caching - [ ] Implement request queuing - [ ] Set up CDN for static assets - [ ] Optimize database queries - [ ] Enable compression middleware Your integration is ready to go live! šŸš€

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ChiragPatankar/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server