We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/ChiragPatankar/MCP'
If you have feedback or need assistance with the MCP directory API, please join our Discord server
QUICK_START_VALIDATION.mdβ’1.22 KiB
# Quick Start: RAG Pipeline Validation
## π Quick Test (5 minutes)
### 1. Start Server
```bash
cd rag-backend
.\venv\Scripts\activate # Windows
uvicorn app.main:app --reload --port 8000
```
### 2. Run Tests (in another terminal)
```bash
cd rag-backend
.\venv\Scripts\activate # Windows
python scripts/validate_rag.py
```
### 3. Expected Result
```
β ALL TESTS PASSED - RAG Pipeline is working correctly
```
---
## π What Gets Tested
1. β Document upload for both tenants
2. β Retrieval accuracy (correct answers)
3. β Tenant isolation (no cross-tenant leaks)
4. β Hallucination refusal (out-of-scope queries)
5. β Citation integrity (all answers cited)
---
## π§ Troubleshooting
### Server Not Starting?
- Check if port 8000 is available
- Verify virtual environment is activated
- Check `GEMINI_API_KEY` is set in `.env`
### Tests Failing?
- Ensure server is running on `http://localhost:8000`
- Check server logs for errors
- Verify test documents exist in `data/test_docs/`
### Import Errors?
- Run: `pip install -r requirements.txt`
- Ensure you're in the `rag-backend` directory
---
## π Full Report
See `VALIDATION_REPORT.md` for detailed results and `FINAL_VALIDATION_SUMMARY.md` for executive summary.