INTEGRATION_STEPS.md•4.78 kB
# Gemini MCP Server Integration Guide
## Current Status ✅
Your integration is **95% complete**! Here's what you have:
- ✅ Frontend React app with complete chat interface
- ✅ API service configured for MCP protocol
- ✅ Gemini MCP server with all endpoints
- ✅ Database integration with SQLAlchemy
- ✅ Authentication and rate limiting middleware
## Step 1: Deploy the Gemini MCP Server
### Option A: Railway Deployment (Recommended)
1. **Create Railway Account**
```bash
# Install Railway CLI
npm install -g @railway/cli
# Login to Railway
railway login
```
2. **Deploy from the gemini-mcp-server folder**
```bash
cd gemini-mcp-server
railway deploy
```
3. **Set Environment Variables in Railway Dashboard**
- `GEMINI_API_KEY`: Your Google Gemini API key
- `DATABASE_URL`: Will be auto-generated by Railway
- `MCP_AUTH_TOKEN`: Create a secure token (e.g., `your-secure-token-2024`)
### Option B: Render/Heroku Deployment
Use the provided `Dockerfile` in the gemini-mcp-server folder.
## Step 2: Get Google Gemini API Key (Free)
1. Visit [Google AI Studio](https://makersuite.google.com/app/apikey)
2. Create a new API key
3. Copy the key for deployment
## Step 3: Update Frontend Environment Variables
Create/update `.env.local` in your root directory:
```env
# MCP Server Configuration
VITE_API_URL=https://your-railway-app.up.railway.app
VITE_MCP_AUTH_TOKEN=your-secure-token-2024
# Google OAuth (if using)
VITE_GOOGLE_CLIENT_ID=your-google-client-id
```
## Step 4: Initialize the Database
After deployment, run the database initialization:
```bash
# SSH into your Railway deployment or run locally
cd gemini-mcp-server
python init_db.py
```
## Step 5: Test the Integration
1. **Test MCP Server Health**
```bash
curl https://your-railway-app.up.railway.app/mcp/health
```
2. **Test from Frontend**
- Start your frontend: `npm run dev`
- Open the chat interface
- Send a test message
## Step 6: Production Deployment
### Frontend Deployment (Vercel/Netlify)
1. **Build the frontend**
```bash
npm run build
```
2. **Deploy to Vercel**
```bash
# Install Vercel CLI
npm install -g vercel
# Deploy
vercel
```
3. **Set Environment Variables in Vercel**
- Copy all environment variables from `.env.local`
## Architecture Overview
```
Frontend (React/TypeScript)
↓ HTTP Requests
MCP Server (FastAPI + Gemini)
↓ Database Operations
PostgreSQL (Railway)
↓ AI Processing
Google Gemini API
```
## API Endpoints Available
Your frontend can use these MCP endpoints:
- `POST /mcp/process` - Single message processing
- `POST /mcp/batch` - Batch message processing
- `GET /mcp/health` - Health check
- `GET /mcp/capabilities` - Server capabilities
- `GET /mcp/version` - MCP version info
## Features Working Out of the Box
✅ Real-time chat interface
✅ Google Gemini AI responses
✅ Message history storage
✅ User authentication integration
✅ Rate limiting and security
✅ Error handling and recovery
✅ Responsive design
✅ Multi-language support
## Next Steps After Integration
1. **Customize AI Behavior**
- Modify prompts in `process_with_gemini()` function
- Add custom context providers
- Implement domain-specific knowledge
2. **Add Advanced Features**
- File upload handling
- Voice messages
- Typing indicators
- Message reactions
3. **Monitoring & Analytics**
- Add logging service (Sentry)
- Implement usage analytics
- Set up monitoring dashboards
## Troubleshooting
### Common Issues
1. **CORS Errors**
- Check CORS configuration in MCP server
- Ensure frontend domain is allowed
2. **Authentication Errors**
- Verify `VITE_MCP_AUTH_TOKEN` matches server token
- Check header format in API requests
3. **Gemini API Errors**
- Verify API key is correctly set
- Check API quota and limits
### Testing Commands
```bash
# Test MCP server locally
cd gemini-mcp-server
python -m uvicorn app:app --reload
# Test frontend locally
npm run dev
# Test API connection
curl -X POST "http://localhost:8000/mcp/process" \
-H "Content-Type: application/json" \
-H "x-mcp-auth: test-token" \
-d '{"query": "Hello", "user_id": "test"}'
```
## Security Checklist
- [ ] Use HTTPS in production
- [ ] Implement proper MCP authentication
- [ ] Set up rate limiting
- [ ] Configure CORS for specific domains
- [ ] Use environment variables for secrets
- [ ] Enable database connection pooling
- [ ] Set up monitoring and alerts
## Performance Optimization
- [ ] Enable Redis for caching
- [ ] Implement request queuing
- [ ] Set up CDN for static assets
- [ ] Optimize database queries
- [ ] Enable compression middleware
Your integration is ready to go live! 🚀