Skip to main content
Glama

MCP Chat Support System

INTEGRATION_STEPS.md4.78 kB
# Gemini MCP Server Integration Guide ## Current Status ✅ Your integration is **95% complete**! Here's what you have: - ✅ Frontend React app with complete chat interface - ✅ API service configured for MCP protocol - ✅ Gemini MCP server with all endpoints - ✅ Database integration with SQLAlchemy - ✅ Authentication and rate limiting middleware ## Step 1: Deploy the Gemini MCP Server ### Option A: Railway Deployment (Recommended) 1. **Create Railway Account** ```bash # Install Railway CLI npm install -g @railway/cli # Login to Railway railway login ``` 2. **Deploy from the gemini-mcp-server folder** ```bash cd gemini-mcp-server railway deploy ``` 3. **Set Environment Variables in Railway Dashboard** - `GEMINI_API_KEY`: Your Google Gemini API key - `DATABASE_URL`: Will be auto-generated by Railway - `MCP_AUTH_TOKEN`: Create a secure token (e.g., `your-secure-token-2024`) ### Option B: Render/Heroku Deployment Use the provided `Dockerfile` in the gemini-mcp-server folder. ## Step 2: Get Google Gemini API Key (Free) 1. Visit [Google AI Studio](https://makersuite.google.com/app/apikey) 2. Create a new API key 3. Copy the key for deployment ## Step 3: Update Frontend Environment Variables Create/update `.env.local` in your root directory: ```env # MCP Server Configuration VITE_API_URL=https://your-railway-app.up.railway.app VITE_MCP_AUTH_TOKEN=your-secure-token-2024 # Google OAuth (if using) VITE_GOOGLE_CLIENT_ID=your-google-client-id ``` ## Step 4: Initialize the Database After deployment, run the database initialization: ```bash # SSH into your Railway deployment or run locally cd gemini-mcp-server python init_db.py ``` ## Step 5: Test the Integration 1. **Test MCP Server Health** ```bash curl https://your-railway-app.up.railway.app/mcp/health ``` 2. **Test from Frontend** - Start your frontend: `npm run dev` - Open the chat interface - Send a test message ## Step 6: Production Deployment ### Frontend Deployment (Vercel/Netlify) 1. **Build the frontend** ```bash npm run build ``` 2. **Deploy to Vercel** ```bash # Install Vercel CLI npm install -g vercel # Deploy vercel ``` 3. **Set Environment Variables in Vercel** - Copy all environment variables from `.env.local` ## Architecture Overview ``` Frontend (React/TypeScript) ↓ HTTP Requests MCP Server (FastAPI + Gemini) ↓ Database Operations PostgreSQL (Railway) ↓ AI Processing Google Gemini API ``` ## API Endpoints Available Your frontend can use these MCP endpoints: - `POST /mcp/process` - Single message processing - `POST /mcp/batch` - Batch message processing - `GET /mcp/health` - Health check - `GET /mcp/capabilities` - Server capabilities - `GET /mcp/version` - MCP version info ## Features Working Out of the Box ✅ Real-time chat interface ✅ Google Gemini AI responses ✅ Message history storage ✅ User authentication integration ✅ Rate limiting and security ✅ Error handling and recovery ✅ Responsive design ✅ Multi-language support ## Next Steps After Integration 1. **Customize AI Behavior** - Modify prompts in `process_with_gemini()` function - Add custom context providers - Implement domain-specific knowledge 2. **Add Advanced Features** - File upload handling - Voice messages - Typing indicators - Message reactions 3. **Monitoring & Analytics** - Add logging service (Sentry) - Implement usage analytics - Set up monitoring dashboards ## Troubleshooting ### Common Issues 1. **CORS Errors** - Check CORS configuration in MCP server - Ensure frontend domain is allowed 2. **Authentication Errors** - Verify `VITE_MCP_AUTH_TOKEN` matches server token - Check header format in API requests 3. **Gemini API Errors** - Verify API key is correctly set - Check API quota and limits ### Testing Commands ```bash # Test MCP server locally cd gemini-mcp-server python -m uvicorn app:app --reload # Test frontend locally npm run dev # Test API connection curl -X POST "http://localhost:8000/mcp/process" \ -H "Content-Type: application/json" \ -H "x-mcp-auth: test-token" \ -d '{"query": "Hello", "user_id": "test"}' ``` ## Security Checklist - [ ] Use HTTPS in production - [ ] Implement proper MCP authentication - [ ] Set up rate limiting - [ ] Configure CORS for specific domains - [ ] Use environment variables for secrets - [ ] Enable database connection pooling - [ ] Set up monitoring and alerts ## Performance Optimization - [ ] Enable Redis for caching - [ ] Implement request queuing - [ ] Set up CDN for static assets - [ ] Optimize database queries - [ ] Enable compression middleware Your integration is ready to go live! 🚀

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ChiragPatankar/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server