Skip to main content
Glama

AI Customer Support Bot - MCP Server

info.txt6.58 kB
Certainly! Here's the **info.txt** file that summarizes everything you want to do for your **AI-powered customer support bot** using **Cursor AI** and deploying it on **Glama.ai**: --- ### **info.txt** #### **Project Overview:** **Project Name:** AI-Powered Customer Support Bot **Goal:** Build a customer support bot using an **MCP (Model Context Protocol)** server that fetches real-time context from Glama.ai and delivers dynamic, context-aware responses for businesses. --- #### **1. Project Requirements:** - **AI Model:** Use **Cursor AI** to process natural language queries. - **Backend:** Flask or FastAPI to serve as the backend API for querying and retrieving responses. - **Frontend (optional):** A simple chat interface where users can send queries (could be integrated with the business's website). - **Deployment:** Host the server and integrate with Glama.ai's API for real-time context fetching. --- #### **2. Backend Setup:** - **Tech Stack:** - **Programming Language:** Python - **Web Framework:** Flask or FastAPI - **API Requests:** Use **requests** library to fetch responses from Cursor AI and Glama.ai API. - **Database:** A relational database (PostgreSQL/MySQL) to store chat logs and user context. This could be connected via SQLAlchemy or similar ORM libraries. - **Hosting:** AWS EC2 or **Glama hosting** (if available) for deployment. --- #### **3. Integration with Glama.ai:** - **Glama.ai API:** Set up a connection with Glama.ai’s API to fetch context dynamically. - **Use Case:** When a customer asks a query, the backend server will send the request to **Glama.ai’s API** for contextual information (like previous interactions, user orders, etc.). The server will then send this context to **Cursor AI** to process and return an appropriate answer. --- #### **4. MCP Server Development:** - **MCP Server Role:** The server will listen for incoming queries, fetch relevant context using Glama.ai, and forward it to the AI model (Cursor AI) to generate a response. - **Sample Request Flow:** - **User Query:** A user sends a message to the bot (e.g., “What’s the status of my order?”). - **Server Action:** The backend fetches relevant context from Glama.ai (e.g., user’s order history). - **AI Processing:** The context is sent to **Cursor AI**, which generates a response. - **Response to User:** The server returns the generated response to the user. --- #### **5. Example Backend Code (Flask/FastAPI):** ```python from flask import Flask, request, jsonify import requests app = Flask(__name__) # Glama AI API Info GLAMA_API_URL = "https://api.glama.ai/endpoint" GLAMA_API_KEY = "your-glama-api-key" # Cursor AI Endpoint CURSOR_API_URL = "https://api.cursor.ai/endpoint" CURSOR_API_KEY = "your-cursor-ai-api-key" # Function to fetch data from Glama.ai def fetch_from_glama(query, user_context): headers = {'Authorization': f'Bearer {GLAMA_API_KEY}', 'Content-Type': 'application/json'} payload = {"query": query, "context": user_context} response = requests.post(GLAMA_API_URL, json=payload, headers=headers) return response.json() # Function to send query to Cursor AI and get response def query_cursor_ai(query): headers = {'Authorization': f'Bearer {CURSOR_API_KEY}', 'Content-Type': 'application/json'} payload = {"query": query} response = requests.post(CURSOR_API_URL, json=payload, headers=headers) return response.json() @app.route('/ask', methods=['POST']) def ask_bot(): user_query = request.json.get('query') user_context = request.json.get('context') # Context from previous interaction or database # Fetch data from Glama.ai glama_data = fetch_from_glama(user_query, user_context) # Query Cursor AI with context and user query cursor_response = query_cursor_ai(user_query + " " + glama_data['context']) return jsonify(cursor_response) if __name__ == '__main__': app.run(debug=True) ``` --- #### **6. Contextual Data Storage:** - **Database:** Use **PostgreSQL** or **MySQL** to store user data, chat logs, and context. For example: - **Table 1:** Users (store user ID, name, contact info, etc.) - **Table 2:** Chats (store chat history, timestamps, user queries, bot responses) - **Database Integration Example (SQLAlchemy):** ```python from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() class User(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(80)) email = db.Column(db.String(120), unique=True) class Chat(db.Model): id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) query = db.Column(db.String(500)) response = db.Column(db.String(500)) db.create_all() ``` --- #### **7. Deployment Options:** - **Platform:** - **Glama.ai** (If it supports server deployment for integration) - **AWS EC2** (For a more customized environment) - **Heroku/Firebase** (For a simpler serverless option) --- #### **8. Monetization Strategy:** - **Subscription Model:** Charge businesses a monthly fee for using the service. - **Basic Plan:** $29/month for up to 500 queries per month. - **Enterprise Plan:** $199/month for unlimited queries, premium features, and customizations. - **Pay-Per-Use Model:** Charge based on usage, e.g., $0.10 per query. - **Custom Solutions:** Offer customized chatbot solutions and charge a one-time setup fee (starting at $500+). --- #### **9. Testing & Iteration:** - **Testing:** Test the bot with a few sample businesses. Ensure the model is fetching correct context from Glama.ai and Cursor AI is providing relevant responses. - **Feedback Loop:** Adjust the logic and enhance the context to improve user satisfaction. --- #### **10. Next Steps:** - Set up **Glama.ai** and **Cursor AI** accounts. - Develop the backend API (Flask or FastAPI) and integrate both AI models. - Set up a database for storing chat logs and context. - Deploy the API server and integrate it with a business's website or CRM. - Start selling your service using the **subscription or pay-per-use model**. --- This **info.txt** file outlines the core structure and steps to build and deploy your customer support bot with **MCP**. Feel free to add more specific details as your project progresses. Let me know if you'd like to add anything else! 🚀

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ChiragPatankar/AI-Customer-Support-Bot---MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server