Skip to main content
Glama

OpenXAI MCP Server

by Cappybara12
MIT License

generate_explanation

Create interpretable explanations for model predictions using methods like LIME, SHAP, and integrated gradients. Input data and model details to clarify decision processes for AI systems.

Instructions

Generate explanations for model predictions using OpenXAI explainers

Input Schema

NameRequiredDescriptionDefault
data_sampleYesJSON string of the input data sample to explain
methodYesExplanation method to use (lime, shap, integrated_gradients, etc.)
model_infoYesInformation about the model being explained

Input Schema (JSON Schema)

{ "properties": { "data_sample": { "description": "JSON string of the input data sample to explain", "type": "string" }, "method": { "description": "Explanation method to use (lime, shap, integrated_gradients, etc.)", "enum": [ "lime", "shap", "integrated_gradients", "gradcam", "guided_backprop" ], "type": "string" }, "model_info": { "description": "Information about the model being explained", "properties": { "data_name": { "type": "string" }, "ml_model": { "type": "string" } }, "type": "object" } }, "required": [ "method", "data_sample", "model_info" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Cappybara12/mcpopenxAI'

If you have feedback or need assistance with the MCP directory API, please join our Discord server