Skip to main content
Glama

Stock Market Analysis MCP Server

by CalvinLiuu
README.mdโ€ข26.1 kB
# Stock Market Analysis MCP Server A comprehensive Model Context Protocol (MCP) server for advanced stock market analysis, trend identification, portfolio management, dividend tracking, sector analysis, risk metrics, and market sentiment tracking. **Version:** 0.4.0 **Tools Available:** 48+ ## ๐Ÿ“‘ Table of Contents - [Features](#-features) - [Installation](#-installation) - [Prerequisites](#prerequisites) - [Step-by-Step Setup](#step-1-get-the-code) - [MCP Configuration](#step-4-configure-mcp-in-cursor) - [Troubleshooting](#-troubleshooting) - [Usage Examples](#-usage-examples) - [Stake Trading Integration](#-stake-trading-integration) - [Technical Indicators](#-technical-indicators-explained) - [Architecture](#๏ธ-architecture) - [Data Storage & Privacy](#-data-storage--privacy) - [Best Practices](#-best-practices) - [Dependencies](#-dependencies) ## ๐Ÿš€ Features ### ๐Ÿ“ˆ Price & Data Tools (`price_data.py`) - **`get_latest_price(ticker)`** - Get the most recent market price for any stock - **`get_historical_data(ticker, period)`** - Retrieve historical OHLC data (Open, High, Low, Close, Volume) - **`get_stock_info(ticker)`** - Comprehensive stock information including fundamentals, P/E ratio, market cap, dividend yield, etc. ### ๐Ÿ’ผ Portfolio Management (`portfolio.py`) - **`add_holding(ticker, shares, purchase_price, purchase_date?)`** - Add stocks to your portfolio with automatic cost basis tracking - **`remove_holding(ticker, shares, sale_price, sale_date?)`** - Sell stocks with automatic profit/loss calculation - **`view_portfolio()`** - See all your holdings with real-time valuations and P&L - **`view_transactions(limit?)`** - Review your transaction history ### ๐Ÿ” Technical Analysis (`analysis.py`) - **`analyze_buy_opportunity(ticker)`** - Simple SMA crossover strategy (20/50 day) - **`calculate_rsi(ticker, period?, timeframe?)`** - Relative Strength Index to identify overbought/oversold conditions - **`calculate_macd(ticker, timeframe?)`** - Moving Average Convergence Divergence for trend momentum - **`analyze_trends(ticker, timeframe?)`** - Multi-indicator comprehensive trend analysis - **`compare_stocks(tickers[])`** - Side-by-side comparison of multiple stocks ### ๐Ÿ”” Alert System (`alerts.py`) - **`set_price_alert(ticker, target_price, alert_type, alert_name?)`** - Set price alerts (above/below thresholds) - **`set_rsi_alert(ticker, rsi_threshold, alert_type, alert_name?)`** - Set RSI alerts for overbought/oversold conditions - **`check_alerts()`** - Check all active alerts and see which ones have been triggered - **`list_alerts()`** - View all configured alerts - **`clear_triggered_alerts()`** - Remove triggered alerts - **`delete_all_alerts()`** - Delete all alerts ### ๐Ÿ’ฐ Dividend Tracking (`dividends.py`) - **`get_dividend_history(ticker, period?)`** - View dividend payment history with trends - **`get_dividend_yield(ticker)`** - Get current dividend yield and related metrics - **`calculate_portfolio_dividend_income()`** - Calculate expected annual dividend income from your portfolio - **`find_high_dividend_stocks(min_yield?, sector?)`** - Discover high-yield dividend stocks ### ๐Ÿข Sector Analysis (`sector.py`) - **`analyze_sector(sector_name)`** - Comprehensive analysis of a specific market sector - **`compare_sectors()`** - Compare performance across all major market sectors - **`get_sector_leaders(sector_name, metric?)`** - Get top performing stocks in a sector - **`analyze_portfolio_sector_allocation()`** - Analyze your portfolio's sector diversification ### โš ๏ธ Risk Metrics (`risk.py`) - **`calculate_sharpe_ratio(ticker, risk_free_rate?, period?)`** - Measure risk-adjusted returns - **`calculate_beta(ticker, benchmark?, period?)`** - Calculate stock volatility vs market - **`calculate_portfolio_risk()`** - Comprehensive portfolio risk analysis with recommendations - **`calculate_var(ticker, confidence_level?, period?, position_size?)`** - Value at Risk calculation - **`calculate_drawdown(ticker, period?)`** - Maximum drawdown and peak-to-trough analysis ### ๐Ÿ“Š Market Sentiment Tracking (`sentiment.py`) โœจ NEW - **`get_market_sentiment()`** - Overall market sentiment score (-100 to +100) with actionable recommendations - **`get_detailed_sentiment_signals()`** - Detailed breakdown of all 9 market indicators - **`get_vix_analysis()`** - VIX volatility analysis (fear/greed gauge) - **`get_market_breadth()`** - Sector participation and market health analysis - **`get_sector_rotation_signal()`** - Defensive vs growth sector rotation patterns - **`get_ai_sector_signal()`** - AI/Tech sector leadership and strength analysis - **`analyze_leverage_indicators()`** - Market leverage and deleveraging signals - **`track_sentiment_history(days?)`** - Historical sentiment trends and momentum **Tracked Indicators:** VIX, SPY/QQQ trends, Put/Call ratio, Sector rotation, Market breadth, Volume patterns, AI/Tech leadership, Leverage stress ### ๐Ÿค– Stake Trading (`stake.py`) - **`configure_stake_connection(...)`** - Supply Stake API endpoint, account id, and session tokens - **`stake_execute_graphql(query, variables?)`** - Send custom GraphQL operations to Stake - **`stake_place_order(symbol, side, quantity, order_type?, ...)`** - Submit market/limit/stop orders - **`stake_cancel_order(order_id)`** - Cancel an existing order - **`stake_list_orders(status_filter?)`** - Review open or historical orders ## ๐Ÿ“ฆ Installation ### Prerequisites Before you begin, ensure you have: - **Python 3.8 or higher** installed on your system - **Cursor IDE** (or another MCP-compatible client) - **Git** (optional, for cloning the repository) - Internet connection for fetching stock market data ### Step 1: Get the Code **Option A: Clone from GitHub** ```bash git clone https://github.com/CalvinLiuu/stock_mcp_server.git cd stock_mcp_server ``` **Option B: Download ZIP** - Download the repository as a ZIP file - Extract it to your desired location - Open a terminal and navigate to the extracted folder ### Step 2: Set Up Virtual Environment Create and activate a virtual environment (recommended): **On macOS/Linux:** ```bash python3 -m venv .venv source .venv/bin/activate ``` **On Windows:** ```bash python -m venv .venv .venv\Scripts\activate ``` ### Step 3: Install Dependencies With your virtual environment activated, install the required packages: ```bash pip install -r requirements.txt ``` This will install: - `yfinance` - For real-time stock market data - `pandas` - For data analysis - `numpy` - For numerical computations - `fastmcp` - For MCP server functionality ### Step 4: Configure MCP in Cursor To use this server with Cursor IDE, you need to add it to your MCP configuration file. #### Locate Your MCP Configuration The MCP configuration file is typically located at: - **macOS/Linux**: `~/.cursor/mcp.json` - **Windows**: `%USERPROFILE%\.cursor\mcp.json` #### Add the Server Configuration Open the `mcp.json` file and add the following configuration (adjust the path to match your installation): **Option A: Using Python Module (Recommended)** ```json { "mcpServers": { "stock-analyzer": { "command": "/absolute/path/to/stock_mcp_server/.venv/bin/python", "args": [ "-m", "mcp.server.fastmcp", "run", "/absolute/path/to/stock_mcp_server/stock.server.py" ], "env": {} } } } ``` **Option B: Using fastmcp CLI** ```json { "mcpServers": { "stock-analyzer": { "command": "/absolute/path/to/stock_mcp_server/.venv/bin/fastmcp", "args": [ "dev", "/absolute/path/to/stock_mcp_server/stock.server.py" ], "env": {} } } } ``` **Important:** - Replace `/absolute/path/to/stock_mcp_server/` with the actual full path to where you installed the server - On Windows, use backslashes and the appropriate paths (e.g., `C:\\Users\\YourName\\...`) - Make sure to use the Python interpreter from your virtual environment (`.venv/bin/python`) **Example for macOS:** ```json { "mcpServers": { "stock-analyzer": { "command": "/Users/johndoe/Documents/stock_mcp_server/.venv/bin/python", "args": [ "-m", "mcp.server.fastmcp", "run", "/Users/johndoe/Documents/stock_mcp_server/stock.server.py" ], "env": {} } } } ``` **Example for Windows:** ```json { "mcpServers": { "stock-analyzer": { "command": "C:\\Users\\JohnDoe\\Documents\\stock_mcp_server\\.venv\\Scripts\\python.exe", "args": [ "-m", "mcp.server.fastmcp", "run", "C:\\Users\\JohnDoe\\Documents\\stock_mcp_server\\stock.server.py" ], "env": {} } } } ``` ### Step 5: Restart Cursor After updating your `mcp.json` configuration: 1. **Save the file** 2. **Completely restart Cursor** (close and reopen) 3. The MCP server should automatically start when Cursor launches ### Step 6: Verify Installation You can verify the installation by checking the MCP logs in Cursor or by trying to use one of the tools: **In Cursor's AI chat, try:** ``` Can you get the latest price for AAPL using the stock analyzer? ``` You should see the server responding with real-time stock data. **Or check available tools:** ``` What tools are available in the stock-analyzer MCP server? ``` ### ๐Ÿงช Testing the Server Manually (Optional) To test the server outside of Cursor: ```bash # Activate your virtual environment first source .venv/bin/activate # macOS/Linux # or .venv\Scripts\activate # Windows # Run the server in development mode fastmcp dev stock.server.py ``` You should see output like: ``` Registering price data tools... Registering portfolio management tools... Registering technical analysis tools... Registering alert system tools... Registering dividend tracking tools... Registering sector analysis tools... Registering risk analysis tools... โœ… All tools registered successfully! ๐Ÿ“Š Stock Market Analyzer v0.3.0 is ready! ``` ### ๐Ÿ”ง Troubleshooting **Server not starting?** - Verify the paths in your `mcp.json` are absolute paths (not relative) - Ensure you're using the Python from your virtual environment (`.venv/bin/python`) - Check that all dependencies are installed: `pip list` should show yfinance, pandas, numpy, fastmcp **"Module not found" errors?** - Make sure your virtual environment is activated - Reinstall dependencies: `pip install -r requirements.txt` **Can't fetch stock data?** - Check your internet connection - Some stocks may have delayed data or require different ticker symbols - Try a common stock like "AAPL" or "MSFT" first **MCP server not appearing in Cursor?** - Ensure the `mcp.json` file is valid JSON (no trailing commas, proper syntax) - Check Cursor's MCP logs for error messages - Try restarting Cursor completely **Permission errors on macOS/Linux?** - Make sure the Python executable is executable: `chmod +x .venv/bin/python` ### ๐Ÿ“ฑ Quick Start After Installation Once installed and configured, you can immediately start using the tools through Cursor's AI chat: ``` # Check a stock price "Get the latest price for Tesla" # Add to your portfolio "Add 10 shares of AAPL at $150 to my portfolio" # View your portfolio "Show me my current portfolio" # Set an alert "Alert me when TSLA goes below $250" # Analyze a stock "Analyze trends for NVDA" ``` ## ๐ŸŽฏ Usage Examples ### Portfolio Management ```python # Add stocks to your portfolio add_holding("AAPL", 10, 150.00) add_holding("MSFT", 5, 380.00) add_holding("NVDA", 8, 450.00) # View your portfolio with current valuations view_portfolio() # Sell some shares remove_holding("AAPL", 5, 175.00) # View transaction history view_transactions(limit=20) ``` ### Alert System ```python # Set a price alert set_price_alert("TSLA", 250.00, "below") # Set an RSI alert for oversold conditions set_rsi_alert("NVDA", 30, "below") # Check if any alerts triggered check_alerts() # View all configured alerts list_alerts() ``` ### Dividend Analysis ```python # View dividend history get_dividend_history("JNJ", period="5y") # Check dividend yield get_dividend_yield("KO") # Calculate portfolio dividend income calculate_portfolio_dividend_income() # Find high-yield stocks in utilities sector find_high_dividend_stocks(min_yield=4.0, sector="Utilities") ``` ### Sector Analysis ```python # Analyze technology sector analyze_sector("Technology") # Compare all sectors compare_sectors() # Get sector leaders by performance get_sector_leaders("Healthcare", metric="return") # Check portfolio sector diversification analyze_portfolio_sector_allocation() ``` ### Risk Analysis ```python # Calculate Sharpe ratio calculate_sharpe_ratio("AAPL", risk_free_rate=0.04, period="1y") # Calculate beta vs S&P 500 calculate_beta("TSLA", benchmark="SPY") # Comprehensive portfolio risk analysis calculate_portfolio_risk() # Calculate Value at Risk calculate_var("NVDA", confidence_level=0.95, position_size=10000) # Analyze maximum drawdown calculate_drawdown("MSFT", period="5y") ``` ### Technical Analysis ```python # Get detailed stock information get_stock_info("GOOGL") # Check RSI for overbought/oversold signals calculate_rsi("TSLA", period=14, timeframe="3mo") # Analyze MACD for momentum calculate_macd("MSFT", timeframe="6mo") # Comprehensive trend analysis analyze_trends("NVDA", timeframe="1y") # Compare multiple stocks compare_stocks(["AAPL", "MSFT", "GOOGL"]) ``` ## ๐Ÿค– Stake Trading Integration The MCP server now includes helper tools for forwarding trades to Stake Australia. Because Stake does not publish an official API, these helpers reuse the same GraphQL calls that the Stake web client performs. You **must** provide valid session tokens obtained from a manual login. ### 1. Collect the required session details 1. Log into [trade.stake.com](https://trade.stake.com) using your normal browser. 2. Open the network inspector and copy the latest `Authorization: Bearer ...` header from any GraphQL request (this becomes your `access_token`). 3. Locate your `accountId` value inside the GraphQL request payloads. 4. Optional: copy any extra headers Stake expects (for example `x-client` or `x-stake-platform`). > โš ๏ธ Tokens eventually expire. If you provide an epoch timestamp via the > `token_expiry` parameter the tools will remind you to refresh the session. ### 2. Configure the Stake connection ```python configure_stake_connection( api_url="https://global-prd-api.stake.com", graphql_path="/graphql", account_id="<your-account-id>", access_token="eyJhbGciOi...", extra_headers={"x-client": "web"}, token_expiry=1719878400 ) ``` Alternatively, export environment variables before launching the MCP server: ```bash export STAKE_API_URL="https://global-prd-api.stake.com" export STAKE_GRAPHQL_PATH="/graphql" export STAKE_ACCOUNT_ID="<your-account-id>" export STAKE_ACCESS_TOKEN="eyJhbGciOi..." export STAKE_EXTRA_HEADERS='{"x-client": "web"}' ``` ### 3. Execute trades or manage orders ```python # Submit a market buy stake_place_order("AAPL", "BUY", quantity=2) # Submit a limit sell outside regular hours stake_place_order( "TSLA", "SELL", quantity=1, order_type="LIMIT", limit_price=310.0, outside_regular_hours=True ) # Inspect and cancel orders stake_list_orders("OPEN") stake_cancel_order("order-id-from-list") ``` For advanced workflows you can run custom GraphQL operations: ```python stake_execute_graphql( """ query CashBalance($accountId: ID!) { accountBalances(accountId: $accountId) { cashAvailableForWithdrawal cashAvailableToTrade } } """, {"accountId": "<your-account-id>"} ) ``` > โ„น๏ธ Stake may change their internal schema without notice. The > `stake_execute_graphql` tool lets you adapt by supplying updated queries or > mutations without editing the MCP server. ## ๐Ÿ“Š Technical Indicators Explained ### RSI (Relative Strength Index) - **Above 70**: Overbought - potential sell signal - **Below 30**: Oversold - potential buy opportunity - **30-70**: Neutral range ### MACD (Moving Average Convergence Divergence) - **Bullish Crossover**: MACD line crosses above signal line - **Bearish Crossover**: MACD line crosses below signal line - Used to identify momentum and trend changes ### SMA Crossover Strategy - **Buy Signal**: Short-term SMA (20-day) crosses above long-term SMA (50-day) - **Sell Signal**: Short-term SMA crosses below long-term SMA ### Sharpe Ratio - **> 2.0**: Excellent risk-adjusted returns - **1.0-2.0**: Good - **0-1.0**: Fair - **< 0**: Poor (returns below risk-free rate) ### Beta - **ฮฒ > 1**: More volatile than market - **ฮฒ = 1**: Moves with market - **0 < ฮฒ < 1**: Less volatile than market - **ฮฒ < 0**: Moves opposite to market ## ๐Ÿ—๏ธ Architecture ``` stock_mcp_server/ โ”œโ”€โ”€ stock.server.py # Main server entry point โ”œโ”€โ”€ run_mcp_server.py # Helper script to run server โ”œโ”€โ”€ utils.py # Shared utilities (load/save data) โ”œโ”€โ”€ price_data.py # Price and stock information โ”œโ”€โ”€ portfolio.py # Portfolio management โ”œโ”€โ”€ analysis.py # Technical analysis tools โ”œโ”€โ”€ alerts.py # Alert system โ”œโ”€โ”€ dividends.py # Dividend tracking โ”œโ”€โ”€ sector.py # Sector analysis โ”œโ”€โ”€ risk.py # Risk metrics โ”œโ”€โ”€ sentiment.py # Market sentiment tracking โœจ NEW โ”œโ”€โ”€ stake.py # Stake Australia trading helpers โ”œโ”€โ”€ requirements.txt # Python dependencies โ”œโ”€โ”€ README.md # Main documentation โ”œโ”€โ”€ data/ # Data files (auto-generated) โ”‚ โ”œโ”€โ”€ portfolio.json # Your portfolio holdings โ”‚ โ”œโ”€โ”€ alerts.json # Your price/RSI alerts โ”‚ โ””โ”€โ”€ sentiment_history.json # Sentiment tracking history โ”œโ”€โ”€ docs/ # Documentation files โ”‚ โ”œโ”€โ”€ TOOLS_REFERENCE.md # Complete tools reference โ”‚ โ”œโ”€โ”€ IMPLEMENTATION_SUMMARY.md # Implementation details โ”‚ โ”œโ”€โ”€ ROADMAP.md # Future features roadmap โ”‚ โ”œโ”€โ”€ SENTIMENT_TRACKER_SUMMARY.md # Sentiment tracker docs โ”‚ โ””โ”€โ”€ CURRENT_MARKET_ANALYSIS.md # Market analysis example โ””โ”€โ”€ venv/ # Python virtual environment ``` ### Modular Design Each module is self-contained and can be updated independently: - **`utils.py`**: Shared functions for data persistence - **`price_data.py`**: Basic stock data retrieval - **`portfolio.py`**: Holdings and transaction tracking - **`analysis.py`**: Technical indicators and trend analysis - **`alerts.py`**: Price and RSI alert system - **`dividends.py`**: Dividend history and income tracking - **`sector.py`**: Sector-wide analysis and comparison - **`risk.py`**: Risk metrics and portfolio risk management - **`sentiment.py`**: Market sentiment aggregation and tracking โœจ NEW - **`stake.py`**: Unofficial Stake Australia order routing helpers ## ๐Ÿ“ Data Storage & Privacy ### ๐Ÿ”’ Local Storage Only **Your data stays completely private and local:** - โœ… All portfolio data is stored on your computer only - โœ… No cloud storage or external servers - โœ… No authentication or account required - โœ… Full control over your data files - โœ… Can backup/edit JSON files directly **What gets stored locally:** - Your stock holdings and transactions โ†’ `data/portfolio.json` - Your price and RSI alerts โ†’ `data/alerts.json` - Your sentiment tracking history โ†’ `data/sentiment_history.json` **What goes to the internet:** - Only market data requests (stock prices, fundamentals, etc.) via Yahoo Finance API - Your personal portfolio data is NEVER transmitted anywhere ### Portfolio Data (`data/portfolio.json`) Location: `data/` folder in the project directory Automatically created and saved with: - Current holdings with average cost basis - Complete transaction history (buy/sell) - Profit/loss calculations - Last update dates **Example structure:** ```json { "holdings": { "AAPL": { "shares": 10, "avg_price": 150.00, "last_updated": "2025-01-15" } }, "transactions": [ { "type": "BUY", "ticker": "AAPL", "shares": 10, "price": 150.00, "date": "2025-01-15", "total": 1500.00 } ] } ``` ### Alert Data (`data/alerts.json`) Location: `data/` folder in the project directory Automatically created and saved with: - Active price alerts (trigger above/below thresholds) - Active RSI alerts (overbought/oversold conditions) - Alert status and trigger history **Example structure:** ```json { "price_alerts": [ { "id": "alert_123", "ticker": "TSLA", "target_price": 250.00, "alert_type": "below", "status": "active" } ], "rsi_alerts": [] } ``` ### Sentiment History Data (`data/sentiment_history.json`) โœจ NEW Location: `data/` folder in the project directory Automatically created when you run sentiment analysis: - Daily sentiment scores (-100 to +100) - Historical classifications (bearish, neutral, bullish) - Keeps last 90 days of data - Enables trend analysis **Example structure:** ```json { "daily_scores": [ { "date": "2025-10-23", "score": 2.4, "classification": "๐ŸŸก NEUTRAL" } ] } ``` ### Backup Your Data Since all data is stored locally in JSON files, you can easily: - **Backup**: Copy the entire `data/` folder to another location - **Restore**: Replace the `data/` folder with your backup - **Edit**: Manually edit the JSON files if needed (be careful with formatting) - **Version Control**: Add to Git (but remember to add to `.gitignore` if sharing publicly) ## ๐Ÿ†• What's New in v0.4.0 ### New Features โœจ 1. **๐Ÿ“Š Market Sentiment Tracker** - Aggregate 9 market indicators for overall sentiment (-100 to +100) - VIX analysis, sector rotation, market breadth, AI/Tech signals - Leverage indicators, Put/Call proxy, volume patterns - Historical tracking and trend analysis - Actionable recommendations based on market conditions ### Project Organization - **New Folders**: `data/` for all JSON files, `docs/` for documentation - **Improved Structure**: Cleaner project layout with separated concerns - **Updated Docs**: Comprehensive documentation in `docs/` folder ## ๐Ÿ†• What's New in v0.3.0 ### New Features 1. **๐Ÿ”” Alert System** - Set price and RSI alerts, check status automatically 2. **๐Ÿ’ฐ Dividend Tracking** - Track dividend history, yields, and portfolio income 3. **๐Ÿข Sector Analysis** - Analyze entire sectors, compare performance, check diversification 4. **โš ๏ธ Risk Metrics** - Sharpe ratio, beta, VaR, drawdown, comprehensive portfolio risk ### Enhanced Features - Modular architecture for better maintainability - Separated concerns into dedicated modules - Improved error handling across all tools - Better data persistence with separate files for alerts ### Previous Features (v0.2.0) - Portfolio management with P&L tracking - Technical indicators (RSI, MACD, SMA) - Comprehensive trend analysis - Stock comparison tools ### Original Features (v0.1.0) - Basic price data retrieval - Historical data access - Simple SMA crossover analysis ## ๐Ÿ”ง Configuration ### Risk-Free Rate Default: 4% (0.04) - Can be adjusted in Sharpe ratio calculations ### Available Sectors - Technology - Healthcare - Financial Services - Energy - Consumer Cyclical - Consumer Defensive - Utilities - Industrials - Real Estate - Materials - Communication Services ### Alert Types - **Price Alerts**: `above` or `below` target price - **RSI Alerts**: `above` or `below` RSI threshold ## ๐Ÿ“š Dependencies - **yfinance** (>=0.2.40): Real-time and historical market data - **pandas** (>=2.0.0): Data manipulation and analysis - **numpy** (>=1.24.0): Numerical computations for risk metrics - **fastmcp** (>=0.1.0): MCP server framework ## ๐ŸŽ“ Best Practices ### Portfolio Management - Diversify across 10-20 different stocks - Keep largest position below 20% of portfolio - Regular rebalancing (quarterly or annually) - Track cost basis for tax purposes ### Risk Management - Target Sharpe ratio > 1.0 for good risk-adjusted returns - Keep portfolio beta between 0.8-1.2 for moderate risk - Monitor maximum drawdown - be prepared for historical volatility - Use VaR to understand daily loss potential ### Sector Allocation - Diversify across at least 5 different sectors - Avoid concentration > 35% in any single sector - Consider sector rotation based on economic cycles - Balance growth and defensive sectors ### Dividend Investing - Look for payout ratios < 80% for sustainability - Prefer dividend growth over just high yield - Reinvest dividends for compound growth - Track ex-dividend dates for planning ## โš ๏ธ Disclaimer This tool is for educational and informational purposes only. It is NOT financial advice. - Market data may be delayed - Past performance doesn't guarantee future results - Always do your own research before investing - Consider consulting a financial advisor - Be aware of tax implications ## ๐Ÿš€ Future Enhancements Potential additions: - Options analysis and Greeks calculation - Fibonacci retracement levels - Support/resistance identification - News sentiment analysis - Backtesting capabilities - Tax lot tracking for capital gains - Portfolio rebalancing suggestions - Correlation analysis between holdings - Monte Carlo simulations - Real-time streaming quotes ## ๐Ÿ“„ License MIT License - Feel free to use and modify as needed. ## ๐Ÿค Contributing Contributions are welcome! Please ensure: - Code follows the modular architecture - New features are in appropriate modules - Documentation is updated - Error handling is comprehensive ## ๐Ÿ“ž Support For issues or questions: 1. Check the documentation above 2. Review the module-specific code 3. Ensure all dependencies are installed 4. Verify API data is accessible --- **Version**: 0.3.0 **Last Updated**: 2025 **Author**: Stock Market Analysis MCP Server

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/CalvinLiuu/stock_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server