Skip to main content
Glama
diffugen_openapi.py40.1 kB
from fastapi import FastAPI, HTTPException, Request, Depends, Header from fastapi.middleware.cors import CORSMiddleware from fastapi.staticfiles import StaticFiles from fastapi.responses import FileResponse from fastapi.middleware import Middleware from pydantic import BaseModel, Field from typing import Optional, Dict, List, Union, Callable, Any import os import sys import json import time import re import argparse from pathlib import Path from datetime import datetime from collections import defaultdict from itertools import chain import gc import uuid # Import DiffuGen functions sys.path.append(os.path.dirname(os.path.abspath(__file__))) from diffugen import generate_stable_diffusion_image, generate_flux_image, load_config as load_diffugen_config, sd_cpp_path as default_sd_cpp_path, _model_paths # Load OpenAPI configuration def load_openapi_config(): """Load the OpenAPI server configuration from openapi_config.json.""" config = {} config_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "openapi_config.json") try: if os.path.exists(config_file): with open(config_file, 'r') as f: config = json.load(f) print(f"Loaded OpenAPI configuration from {config_file}") else: print(f"OpenAPI configuration file not found at {config_file}, using defaults") except Exception as e: print(f"Error loading OpenAPI configuration: {e}") print("Using default configuration") # Set defaults for missing values if "server" not in config: config["server"] = {"host": "0.0.0.0", "port": 5199, "debug": False} if "paths" not in config: config["paths"] = { "sd_cpp_path": default_sd_cpp_path, "models_dir": None, "output_dir": "outputs" } if "cors" not in config: config["cors"] = { "allow_origins": ["*"], "allow_methods": ["GET", "POST", "OPTIONS"], "allow_headers": ["*"] } if "rate_limiting" not in config: config["rate_limiting"] = {"rate": "60/minute", "enabled": True} if "images" not in config: config["images"] = {"serve_path": "/images", "cache_control": "max-age=3600"} # Apply any environment variable overrides if "DIFFUGEN_OPENAPI_PORT" in os.environ: try: config["server"]["port"] = int(os.environ.get("DIFFUGEN_OPENAPI_PORT", config["server"]["port"])) except ValueError: print(f"Invalid port in DIFFUGEN_OPENAPI_PORT: {os.environ.get('DIFFUGEN_OPENAPI_PORT')}") if "SD_CPP_PATH" in os.environ: config["paths"]["sd_cpp_path"] = os.environ.get("SD_CPP_PATH", config["paths"]["sd_cpp_path"]) if "DIFFUGEN_OUTPUT_DIR" in os.environ: config["paths"]["output_dir"] = os.environ.get("DIFFUGEN_OUTPUT_DIR", config["paths"]["output_dir"]) if "DIFFUGEN_CORS_ORIGINS" in os.environ: config["cors"]["allow_origins"] = os.environ.get("DIFFUGEN_CORS_ORIGINS", "").split(",") if "DIFFUGEN_RATE_LIMIT" in os.environ: config["rate_limiting"]["rate"] = os.environ.get("DIFFUGEN_RATE_LIMIT", config["rate_limiting"]["rate"]) if "CUDA_VISIBLE_DEVICES" in os.environ: if "env" not in config: config["env"] = {} config["env"]["CUDA_VISIBLE_DEVICES"] = os.environ.get("CUDA_VISIBLE_DEVICES", "") if "VRAM_USAGE" in os.environ: if "hardware" not in config: config["hardware"] = {} config["hardware"]["vram_usage"] = os.environ.get("VRAM_USAGE", "") if "GPU_LAYERS" in os.environ: if "hardware" not in config: config["hardware"] = {} try: config["hardware"]["gpu_layers"] = int(os.environ.get("GPU_LAYERS", 0)) except ValueError: print(f"Invalid GPU_LAYERS value: {os.environ.get('GPU_LAYERS')}") # Apply environment variables from config if "env" in config: for key, value in config["env"].items(): os.environ[key] = str(value) print(f"Set environment variable {key}={value}") return config # Load the OpenAPI configuration config = load_openapi_config() # Convert paths to Path objects for better cross-platform compatibility SD_CPP_PATH = Path(config["paths"]["sd_cpp_path"]) # Set default output directory DEFAULT_OUTPUT_DIR = Path(config["paths"]["output_dir"]) # Try to create output directory with better error handling try: os.makedirs(DEFAULT_OUTPUT_DIR, exist_ok=True) except PermissionError: print(f"Warning: Could not create output directory at {DEFAULT_OUTPUT_DIR} due to permission error") print("Falling back to creating 'output' directory in current working directory") DEFAULT_OUTPUT_DIR = Path.cwd() / "output" try: os.makedirs(DEFAULT_OUTPUT_DIR, exist_ok=True) except Exception as e: print(f"Error: Could not create fallback output directory: {e}") print("Please ensure you have write permissions in the current directory") sys.exit(1) except Exception as e: print(f"Error: Could not create output directory: {e}") print("Please check your system permissions and try again") sys.exit(1) # Set environment variable for DiffuGen functions os.environ["DIFFUGEN_OUTPUT_DIR"] = str(DEFAULT_OUTPUT_DIR) # Rate limiting middleware class RateLimitMiddleware: def __init__( self, app, rate_limit: str = "60/minute", enabled: bool = True, rate_limit_by_key: Optional[Callable] = None, ): self.app = app self.enabled = enabled self.rate_limit_by_key = rate_limit_by_key or (lambda request: request.client.host) # Parse rate limit (format: number/timeunit) match = re.match(r"(\d+)/(\w+)", rate_limit) if not match: raise ValueError(f"Invalid rate limit format: {rate_limit}") self.max_requests = int(match.group(1)) timeunit = match.group(2).lower() # Convert time unit to seconds if timeunit == "second": self.window_seconds = 1 elif timeunit == "minute": self.window_seconds = 60 elif timeunit == "hour": self.window_seconds = 3600 elif timeunit == "day": self.window_seconds = 86400 else: raise ValueError(f"Invalid time unit: {timeunit}") # Rate limit storage - use filesystem-based approach for better multi-process support self.cache_dir = Path(os.path.join(os.getcwd(), ".rate_limit_cache")) try: os.makedirs(self.cache_dir, exist_ok=True) except Exception as e: print(f"Warning: Could not create rate limit cache directory: {e}") print("Rate limiting will use in-memory storage and may not work correctly in multi-process deployments") # Fallback to in-memory storage self.requests = defaultdict(list) self.use_filesystem = False else: self.use_filesystem = True def _get_cache_path(self, key): """Get filesystem path for a rate limit key""" # Create a safe filename from the key safe_key = re.sub(r'[^\w]', '_', str(key)) return self.cache_dir / f"{safe_key}.json" def _read_requests(self, key): """Read requests from filesystem for a key""" if not self.use_filesystem: return self.requests[key] cache_path = self._get_cache_path(key) try: if cache_path.exists(): with open(cache_path, 'r') as f: return json.load(f) return [] except Exception as e: print(f"Error reading rate limit cache: {e}") return [] def _write_requests(self, key, requests): """Write requests to filesystem for a key""" if not self.use_filesystem: self.requests[key] = requests return cache_path = self._get_cache_path(key) try: with open(cache_path, 'w') as f: json.dump(requests, f) except Exception as e: print(f"Error writing rate limit cache: {e}") def _clean_old_requests(self, key): """Clean up old requests for a key""" now = time.time() requests = self._read_requests(key) updated_requests = [req_time for req_time in requests if now - req_time < self.window_seconds] if len(updated_requests) != len(requests): self._write_requests(key, updated_requests) return updated_requests async def __call__(self, scope, receive, send): if not self.enabled or scope["type"] != "http": return await self.app(scope, receive, send) # Create a request object to get client information request = Request(scope=scope, receive=receive) # Get the rate limit key (client IP by default) key = self.rate_limit_by_key(request) # Clean up old requests and get current ones requests = self._clean_old_requests(key) # Check if rate limit is exceeded if len(requests) >= self.max_requests: # Create a response for rate limit exceeded headers = [ (b"content-type", b"application/json"), (b"x-rate-limit-limit", str(self.max_requests).encode()), (b"x-rate-limit-remaining", b"0"), (b"x-rate-limit-reset", str(int(time.time() + self.window_seconds)).encode()), ] response = { "error": "Rate limit exceeded", "detail": f"Maximum {self.max_requests} requests per {self.window_seconds} seconds", "timestamp": datetime.now().isoformat() } await send({ "type": "http.response.start", "status": 429, "headers": headers }) await send({ "type": "http.response.body", "body": json.dumps(response).encode() }) return # Record the request now = time.time() requests.append(now) self._write_requests(key, requests) # Add rate limit headers to responses original_send = send async def wrapped_send(message): if message["type"] == "http.response.start": message.setdefault("headers", []) message["headers"].append( (b"x-rate-limit-limit", str(self.max_requests).encode()) ) message["headers"].append( (b"x-rate-limit-remaining", str(max(0, self.max_requests - len(requests))).encode()) ) message["headers"].append( (b"x-rate-limit-reset", str(int(now + self.window_seconds)).encode()) ) await original_send(message) await self.app(scope, receive, wrapped_send) # Create FastAPI app with middlewares middlewares = [ Middleware( CORSMiddleware, allow_origins=config["cors"]["allow_origins"], allow_credentials=True, allow_methods=config["cors"]["allow_methods"], allow_headers=config["cors"]["allow_headers"], ) ] # Add rate limiting middleware if enabled if config.get("rate_limiting", {}).get("enabled", True): middlewares.append( Middleware( RateLimitMiddleware, rate_limit=config.get("rate_limiting", {}).get("rate", "60/minute"), enabled=config.get("rate_limiting", {}).get("enabled", True), ) ) app = FastAPI( title="DiffuGen", description="AI Image Generation API using Stable Diffusion and Flux models", version="1.0.0", terms_of_service="http://example.com/terms/", contact={ "name": "DiffuGen Support", "url": "https://github.com/CLOUDWERX-DEV/diffugen", "email": "support@example.com", }, license_info={ "name": "Apache 2.0", "url": "https://www.apache.org/licenses/LICENSE-2.0.html", }, openapi_tags=[ { "name": "Image Generation", "description": "Generate images using various AI models" }, { "name": "System", "description": "System information and health checks" }, { "name": "Images", "description": "Manage generated images" } ], middleware=middlewares ) # Mount the output directory for serving generated images with proper cache control print(f"Mounting static files from {DEFAULT_OUTPUT_DIR.absolute()} at {config['images']['serve_path']}") app.mount( config["images"]["serve_path"], StaticFiles( directory=str(DEFAULT_OUTPUT_DIR.absolute()), check_dir=True, html=False ), name="images" ) # Add middleware to set cache control headers @app.middleware("http") async def add_cache_control(request: Request, call_next): response = await call_next(request) # Add cache control headers for image responses if request.url.path.startswith(config["images"]["serve_path"]): # Set strict no-cache headers for images to prevent browser caching response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" response.headers["Pragma"] = "no-cache" response.headers["Expires"] = "0" print(f"Added no-cache headers for: {request.url.path}") return response # API Key security async def verify_api_key(x_api_key: Optional[str] = Header(None)): """Verify the API key if API key security is enabled""" # Check if API key security is enabled if config.get("security", {}).get("api_key_required", False): if not x_api_key: raise HTTPException( status_code=401, detail="API key is required", headers={"WWW-Authenticate": "ApiKey"}, ) # Check if the provided API key is valid valid_keys = config.get("security", {}).get("api_keys", []) if x_api_key not in valid_keys: raise HTTPException( status_code=403, detail="Invalid API key", headers={"WWW-Authenticate": "ApiKey"}, ) return x_api_key # Error response model class ErrorResponse(BaseModel): error: str detail: Optional[str] = None timestamp: str = Field(default_factory=lambda: datetime.now().isoformat()) # Health check endpoint @app.get("/health", tags=["System"], response_model=Dict[str, str]) async def health_check(): """Check the health status of the API server""" return { "status": "healthy", "version": "1.0.0", "timestamp": datetime.now().isoformat() } # Configuration endpoint @app.get("/config", tags=["System"], response_model=Dict[str, object]) async def get_config(): """Get the current server configuration (excluding sensitive information)""" # Create a sanitized config (remove security info) safe_config = config.copy() if "security" in safe_config: if "api_keys" in safe_config["security"]: # Remove actual keys but keep the count safe_config["security"] = { "api_key_required": safe_config["security"].get("api_key_required", False), "api_key_count": len(safe_config["security"].get("api_keys", [])) } return safe_config # System info endpoint @app.get("/system", tags=["System"], response_model=Dict[str, Union[str, List[str]]]) async def system_info(): """Get system information and configuration""" return { "python_version": sys.version, "sd_cpp_path": str(SD_CPP_PATH), "output_dir": str(DEFAULT_OUTPUT_DIR), "available_models": list(_model_paths.keys()), "timestamp": datetime.now().isoformat(), "platform": sys.platform } # List images endpoint @app.get("/images", tags=["Images"], response_model=Dict[str, List[Dict[str, str]]]) async def list_images(): """List all generated images""" try: images = [] # Log current paths for debugging print(f"Looking for images in: {DEFAULT_OUTPUT_DIR} (absolute: {DEFAULT_OUTPUT_DIR.absolute()})") print(f"Images path in server config: {config['images']['serve_path']}") # Use os.path.exists to verify directory accessibility if not os.path.exists(DEFAULT_OUTPUT_DIR): print(f"WARNING: Output directory does not exist or is not accessible: {DEFAULT_OUTPUT_DIR}") os.makedirs(DEFAULT_OUTPUT_DIR, exist_ok=True) print(f"Created output directory: {DEFAULT_OUTPUT_DIR}") # List all files in the directory to debug existing_files = list(os.listdir(DEFAULT_OUTPUT_DIR)) print(f"Files in output directory: {existing_files}") for file in chain(DEFAULT_OUTPUT_DIR.glob("*.[jp][pn][g]"), DEFAULT_OUTPUT_DIR.glob("*.jpeg")): # Add extra verification that file really exists and is accessible if not os.path.exists(file) or not os.access(str(file), os.R_OK): print(f"WARNING: File listed but not accessible: {file}") continue # Get absolute paths to ensure we're referencing the correct file abs_path = os.path.abspath(file) rel_path = f"{config['images']['serve_path']}/{file.name}" print(f"Found image: {file.name} at {abs_path}, serving at {rel_path}") images.append({ "filename": file.name, "path": rel_path, "created": datetime.fromtimestamp(file.stat().st_ctime).isoformat() }) print(f"Total images found: {len(images)}") return {"images": images} except Exception as e: print(f"ERROR in list_images: {str(e)}") raise HTTPException(status_code=500, detail=str(e)) # OpenAPI Tags Metadata tags_metadata = [ { "name": "generation", "description": "Image generation endpoints for both Stable Diffusion and Flux models", }, { "name": "models", "description": "Model information and configuration endpoints", }, ] class ImageGenerationRequest(BaseModel): prompt: str = Field(..., description="Text prompt for image generation") model: Optional[str] = Field(None, description="Model to use for generation (e.g., 'sdxl', 'flux-schnell')") width: Optional[int] = Field(None, description="Image width in pixels", ge=64, le=2048) height: Optional[int] = Field(None, description="Image height in pixels", ge=64, le=2048) steps: Optional[int] = Field(None, description="Number of inference steps", ge=1, le=150) cfg_scale: Optional[float] = Field(None, description="Classifier-free guidance scale", ge=1.0, le=20.0) seed: Optional[int] = Field(-1, description="Random seed for generation (-1 for random)") sampling_method: Optional[str] = Field(None, description="Sampling method to use") negative_prompt: Optional[str] = Field("", description="Negative prompt for generation") output_dir: Optional[str] = Field(None, description="Output directory for generated images") class Config: json_schema_extra = { "example": { "prompt": "a beautiful sunset over mountains", "model": "sdxl", "width": 1024, "height": 1024, "steps": 30, "cfg_scale": 7.5, "seed": -1, "sampling_method": "euler_a", "negative_prompt": "blur, low quality" } } class ImageGenerationResponse(BaseModel): """Response for image generation""" success: bool error: Optional[str] = None image_path: Optional[str] = None image_url: Optional[str] = None # Default to None to prevent client from trying to load an image when generation fails markdown_response: str model: Optional[str] = None prompt: Optional[str] = None parameters: Optional[Dict[str, Any]] = None # Add resource cleanup helper function def cleanup_resources(): """Basic cleanup to prevent hanging on subsequent requests (works on all platforms)""" # Force garbage collection to clean up memory resources gc.collect() # Verify the output directory exists and is accessible try: if not os.path.exists(DEFAULT_OUTPUT_DIR): os.makedirs(DEFAULT_OUTPUT_DIR, exist_ok=True) print(f"Recreated output directory at {DEFAULT_OUTPUT_DIR}") except Exception as e: print(f"Error verifying output directory: {e}") # Very brief pause to allow file handles to be released # Keep this minimal to not impact user experience time.sleep(0.05) @app.post("/generate/stable", response_model=ImageGenerationResponse, tags=["Image Generation"], summary="Generate with Stable Diffusion", description="Generate images using standard Stable Diffusion models (SDXL, SD3, SD15)") async def generate_stable_image(request: ImageGenerationRequest, req: Request, api_key: str = Depends(verify_api_key)): """Generate an image using standard Stable Diffusion models (SDXL, SD3, SD15)""" try: # If no model specified or the request came directly to this endpoint without a model, # redirect to flux endpoint to ensure we generate only one image if not request.model: # Check if this was a direct request to the stable endpoint # If so, default to SD15 instead of going to flux endpoint # Otherwise, redirect to flux endpoint referer = req.headers.get("referer", "") user_agent = req.headers.get("user-agent", "") # If it looks like a direct API call from OpenWebUI tools if "openwebui" in user_agent.lower() or "openwebui" in referer.lower(): request.model = "sd15" # Default to SD15 for stable endpoint else: # Otherwise, follow the original behavior of redirecting to flux return await generate_flux_image_endpoint(request, req) # Validate model name before proceeding (prevent typos) valid_models = ["sd15", "sdxl", "sd3"] if request.model.lower() not in valid_models: error_msg = f"Model {request.model} is not a valid Stable Diffusion model. Supported models are: {', '.join(valid_models)}" print(f"Invalid model specified: {request.model}") # Raise an HTTPException with 400 Bad Request raise HTTPException( status_code=400, detail=error_msg ) # Force a random seed when the request appears to be a "make another" type request # Look for patterns in the referer or request path that indicate this is a follow-up request referer = req.headers.get("referer", "") if "generate" in referer or req.url.path.endswith("/stable"): # This looks like a follow-up request, force new random seed request.seed = -1 # Ensure resources are cleaned up before generating a new image cleanup_resources() abs_output_dir = os.path.abspath(str(DEFAULT_OUTPUT_DIR)) print(f"Using absolute output directory: {abs_output_dir}") print(f"Output directory exists: {os.path.exists(abs_output_dir)}") result = generate_stable_diffusion_image( prompt=request.prompt, model=request.model, width=request.width, height=request.height, steps=request.steps, cfg_scale=request.cfg_scale, seed=request.seed, sampling_method=request.sampling_method, negative_prompt=request.negative_prompt, output_dir=abs_output_dir ) if not result.get("success", False): error_msg = result.get("error", "Unknown error") print(f"Image generation failed: {error_msg}") # Raise an HTTPException with 400 Bad Request raise HTTPException( status_code=400, detail=error_msg ) # Create full image URL including host image_path = Path(result["image_path"]) # Print path information for debugging print(f"Image path from generator: {image_path}") print(f"Image path exists: {os.path.exists(image_path)}") print(f"Image path size: {os.path.getsize(image_path) if os.path.exists(image_path) else 'N/A'}") print(f"Image file name: {image_path.name}") # Stricter verification that the image file exists and is readable # Wait a moment to ensure file operations are complete # This helps fix the issue where the image is reported as created but not yet fully written max_retries = 5 retry_delay = 0.5 for attempt in range(max_retries): if os.path.exists(image_path) and os.access(str(image_path), os.R_OK) and os.path.getsize(image_path) > 0: break print(f"Waiting for image file to be available (attempt {attempt+1}/{max_retries}): {image_path}") time.sleep(retry_delay) # Final verification check if not (os.path.exists(image_path) and os.access(str(image_path), os.R_OK) and os.path.getsize(image_path) > 0): error_msg = f"Generated image file not found or not readable at path: {image_path}" print(f"ERROR: {error_msg}") # List files in output directory to see what's actually there print(f"Files in output directory: {os.listdir(DEFAULT_OUTPUT_DIR)}") # Raise an HTTPException with 500 Internal Server Error raise HTTPException( status_code=500, detail=error_msg ) # Add timestamp to prevent caching timestamp = int(time.time()) base_url = str(req.base_url).rstrip('/') file_name = os.path.basename(image_path) image_url = f"{base_url}{config['images']['serve_path']}/{file_name}?t={timestamp}" print(f"Constructed image URL with timestamp: {image_url}") # Create markdown-formatted response markdown_response = f"Here's the image you requested:\n\n![Image]({image_url})\n\n**Generation Details:**\n- Model: {result['model']}\n- Prompt: {result['prompt']}\n- Resolution: {result['width']}x{result['height']} pixels\n- Steps: {result['steps']}\n- CFG Scale: {result['cfg_scale']}\n- Sampling Method: {result['sampling_method']}\n- Seed: {result['seed'] if result['seed'] != -1 else 'random'}" return ImageGenerationResponse( success=True, image_path=str(image_path), image_url=image_url, markdown_response=markdown_response, model=result["model"], prompt=result["prompt"], parameters={ "width": result["width"], "height": result["height"], "steps": result["steps"], "cfg_scale": result["cfg_scale"], "seed": result["seed"], "sampling_method": result["sampling_method"], "negative_prompt": result["negative_prompt"] } ) except HTTPException: # Re-raise HTTP exceptions raise except Exception as e: error_msg = str(e) print(f"Unexpected error in generate_stable_image: {error_msg}") # Raise an HTTPException with 500 Internal Server Error raise HTTPException( status_code=500, detail=error_msg ) @app.post("/generate/flux", response_model=ImageGenerationResponse, tags=["Image Generation"], summary="Generate with Flux Models", description="Generate images using Flux models (flux-schnell, flux-dev)") async def generate_flux_image_endpoint(request: ImageGenerationRequest, req: Request, api_key: str = Depends(verify_api_key)): """Generate an image using Flux models (flux-schnell, flux-dev)""" try: # Set default model to flux-schnell if not specified if not request.model: request.model = "flux-schnell" # Validate model name before proceeding if request.model.lower() not in ["flux-schnell", "flux-dev"]: error_msg = f"Model {request.model} is not a valid Flux model. Only flux-schnell and flux-dev are supported." print(f"Invalid model specified: {request.model}") # Raise an HTTPException with 400 Bad Request instead of returning a 200 OK raise HTTPException( status_code=400, detail=error_msg ) # Force a random seed when the request appears to be a "make another" type request # Look for patterns in the referer or request path that indicate this is a follow-up request referer = req.headers.get("referer", "") if "generate" in referer or req.url.path.endswith("/flux"): # This looks like a follow-up request, force new random seed request.seed = -1 # Ensure resources are cleaned up before generating a new image cleanup_resources() # Log the directory structure to debug path issues abs_output_dir = os.path.abspath(str(DEFAULT_OUTPUT_DIR)) print(f"Using absolute output directory: {abs_output_dir}") print(f"Output directory exists: {os.path.exists(abs_output_dir)}") result = generate_flux_image( prompt=request.prompt, model=request.model, width=request.width, height=request.height, steps=request.steps, cfg_scale=request.cfg_scale, seed=request.seed, sampling_method=request.sampling_method, output_dir=abs_output_dir ) if not result.get("success", False): error_msg = result.get("error", "Unknown error") print(f"Image generation failed: {error_msg}") # Raise an HTTPException with 400 Bad Request instead of returning a 200 OK raise HTTPException( status_code=400, detail=error_msg ) # Get the image path from the result and ensure it's an absolute path if "image_path" not in result: print("ERROR: image_path missing from result") # Raise an HTTPException with 500 Internal Server Error raise HTTPException( status_code=500, detail="Image generation response missing image path" ) # Create full image URL including host image_path = Path(result["image_path"]) # Print path information for debugging print(f"Image path from generator: {image_path}") print(f"Image path exists: {os.path.exists(image_path)}") print(f"Image path size: {os.path.getsize(image_path) if os.path.exists(image_path) else 'N/A'}") print(f"Image file name: {image_path.name}") # Stricter verification that the image file exists and is readable # Wait a moment to ensure file operations are complete # This helps fix the issue where the image is reported as created but not yet fully written max_retries = 5 # Increase retry attempts retry_delay = 0.5 for attempt in range(max_retries): if os.path.exists(image_path) and os.access(str(image_path), os.R_OK) and os.path.getsize(image_path) > 0: break print(f"Waiting for image file to be available (attempt {attempt+1}/{max_retries}): {image_path}") time.sleep(retry_delay) # Final verification check if not (os.path.exists(image_path) and os.access(str(image_path), os.R_OK) and os.path.getsize(image_path) > 0): error_msg = f"Generated image file not found or not readable at path: {image_path}" print(f"ERROR: {error_msg}") # List files in output directory to see what's actually there print(f"Files in output directory: {os.listdir(DEFAULT_OUTPUT_DIR)}") # Raise an HTTPException with 500 Internal Server Error raise HTTPException( status_code=500, detail=error_msg ) # Ensure we're calculating the relative URL path correctly # Get just the filename and construct the URL path with a timestamp to prevent caching timestamp = int(time.time()) base_url = str(req.base_url).rstrip('/') file_name = os.path.basename(image_path) image_url = f"{base_url}{config['images']['serve_path']}/{file_name}?t={timestamp}" print(f"Constructed image URL with timestamp: {image_url}") # Create markdown-formatted response markdown_response = f"Here's the image you requested:\n\n![Image]({image_url})\n\n**Generation Details:**\n- Model: {result['model']}\n- Prompt: {result['prompt']}\n- Resolution: {result['width']}x{result['height']} pixels\n- Steps: {result['steps']}\n- CFG Scale: {result['cfg_scale']}\n- Sampling Method: {result['sampling_method']}\n- Seed: {result['seed'] if result['seed'] != -1 else 'random'}" return ImageGenerationResponse( success=True, image_path=str(image_path), image_url=image_url, markdown_response=markdown_response, model=result["model"], prompt=result["prompt"], parameters={ "width": result["width"], "height": result["height"], "steps": result["steps"], "cfg_scale": result["cfg_scale"], "seed": result["seed"], "sampling_method": result["sampling_method"] } ) except HTTPException: # Re-raise HTTP exceptions raise except Exception as e: error_msg = str(e) print(f"Unexpected error in generate_flux_image_endpoint: {error_msg}") # Raise an HTTPException with 500 Internal Server Error raise HTTPException( status_code=500, detail=error_msg ) @app.get("/models", tags=["Models"], summary="List Available Models", response_model=Dict[str, Dict[str, Union[List[str], Dict]]]) async def list_models(): """List available models and their default parameters""" try: # Use models from the OpenAPI config if available, otherwise load from diffugen config if "models" in config and config["models"]: models = config["models"] else: diffugen_config = load_diffugen_config() models = { "flux": ["flux-schnell", "flux-dev"], "stable_diffusion": ["sdxl", "sd3", "sd15"] } # Use default parameters from OpenAPI config if available if "default_params" in config: default_params = config["default_params"] else: diffugen_config = load_diffugen_config() default_params = diffugen_config.get("default_params", {}) return { "models": models, "default_params": default_params } except Exception as e: print(f"Error in list_models: {e}") return { "models": { "flux": ["flux-schnell", "flux-dev"], "stable_diffusion": ["sdxl", "sd3", "sd15"] }, "default_params": { "width": 512, "height": 512 } } @app.get("/openapi.json", include_in_schema=False) async def get_openapi_schema(): """Get OpenAPI schema with CORS support""" return app.openapi() # Add a new unified endpoint that will become the primary entry point @app.post("/generate", response_model=ImageGenerationResponse, tags=["Image Generation"], summary="Generate Image (Unified Endpoint)", description="Unified endpoint that automatically selects the appropriate model type") async def generate_image(request: ImageGenerationRequest, req: Request, api_key: str = Depends(verify_api_key)): """Generate an image using the appropriate model type based on request or config""" # Apply default width/height from config if not specified if request.width is None and "default_params" in config and "width" in config["default_params"]: request.width = config["default_params"]["width"] if request.height is None and "default_params" in config and "height" in config["default_params"]: request.height = config["default_params"]["height"] # Force a random seed for all requests to this unified endpoint # This ensures "make another" requests always generate different images request.seed = -1 # Add a distinct client ID in the request headers to prevent client-side caching # This works with the timestamp approach to ensure unique URLs for each request client_id = str(uuid.uuid4()) req.headers.__dict__["_list"].append( (b"x-diffugen-client-id", client_id.encode()) ) print(f"Added unique client ID to request: {client_id}") # Ensure resources are cleaned up before generating a new image cleanup_resources() # If model is specified, route to appropriate endpoint if request.model: if request.model.lower().startswith("flux-"): return await generate_flux_image_endpoint(request, req) else: return await generate_stable_image(request, req) else: # Use default model from config, or fall back to flux-schnell default_model = config.get("default_model", "flux-schnell") request.model = default_model if default_model.lower().startswith("flux-"): return await generate_flux_image_endpoint(request, req) else: return await generate_stable_image(request, req) # Update the main function to use configuration if __name__ == "__main__": import uvicorn parser = argparse.ArgumentParser(description="DiffuGen OpenAPI Server") parser.add_argument("--host", type=str, help="Host to bind the server to") parser.add_argument("--port", type=int, help="Port to bind the server to") parser.add_argument("--config", type=str, help="Path to custom config file") args = parser.parse_args() # Override config with command line arguments if provided host = args.host or config["server"]["host"] port = args.port or config["server"]["port"] # Load custom config file if specified if args.config: try: with open(args.config, 'r') as f: custom_config = json.load(f) config.update(custom_config) print(f"Loaded custom configuration from {args.config}") except Exception as e: print(f"Error loading custom configuration: {e}") print(f"Starting DiffuGen OpenAPI server at http://{host}:{port}") print(f"Documentation available at http://{host}:{port}/docs") print(f"Serving images from {DEFAULT_OUTPUT_DIR} at {host}:{port}{config['images']['serve_path']}") uvicorn.run(app, host=host, port=port)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/CLOUDWERX-DEV/DiffuGen'

If you have feedback or need assistance with the MCP directory API, please join our Discord server