Skip to main content
Glama

MCP Server for Mem.ai

A production-ready Model Context Protocol (MCP) server that provides AI assistants with intelligent access to Mem.ai's knowledge management platform.

Python 3.10+ License: MIT

✨ Features

  • 🧠 Intelligent Memory: Save and process content with Mem It's AI-powered organization

  • πŸ“ Note Management: Create, read, and delete structured markdown notes

  • πŸ“ Collections: Organize notes into searchable collections

  • πŸ”’ Type-Safe: Full type hints and Pydantic validation

  • ⚑ Async/Await: High-performance async I/O throughout

  • 🎯 Clean API: Simple, intuitive interface for AI assistants

  • πŸ›‘οΈ Production-Ready: Comprehensive error handling and logging

  • πŸ§ͺ Well-Tested: Full test suite with pytest

πŸ“‹ Prerequisites

πŸš€ Quick Start

Installation

  1. Clone the repository:

git clone https://github.com/yourusername/mcp-mem.ai.git cd mcp-mem.ai
  1. Install dependencies:

pip install -e .
  1. Set up your environment:

cp .env.example .env # Edit .env and add your MEM_API_KEY

Running the Server

Local Development

fastmcp run src/mcp_mem/server.py

Using with Claude Desktop

Add to your Claude Desktop configuration (claude_desktop_config.json):

{ "mcpServers": { "mem": { "command": "python", "args": ["-m", "mcp_mem.server"], "env": { "MEM_API_KEY": "your_api_key_here" } } } }

Using with Other MCP Clients

from mcp_mem import mcp # Run the server mcp.run()

πŸ› οΈ Available Tools

1. mem_it - Intelligent Content Processing

Save and automatically process any content type with AI-powered organization.

Parameters:

  • input (required): Content to save (text, HTML, markdown, etc.)

  • instructions (optional): Processing instructions

  • context (optional): Additional context for organization

  • timestamp (optional): ISO 8601 timestamp

Example:

mem_it( input="Just had a great meeting with the product team about Q1 roadmap...", instructions="Extract key action items and decisions", context="Product Planning" )

2. create_note - Create Structured Note

Create a markdown-formatted note with explicit control over content and organization.

Parameters:

  • content (required): Markdown-formatted content

  • collection_ids (optional): List of collection UUIDs

  • collection_titles (optional): List of collection titles

Example:

create_note( content="""# Team Standup - Jan 15, 2024 ## Completed - Feature X shipped to production - Bug fixes for issue #123 ## In Progress - Working on Feature Y - Code review for PR #456 ## Blockers - Waiting for API access """, collection_titles=["Team Meetings", "Engineering"] )

3. read_note - Read Note

Retrieve a note's full content and metadata by ID.

Parameters:

  • note_id (required): UUID of the note

Example:

read_note("01961d40-7a67-7049-a8a6-d5638cbaaeb9")

4. delete_note - Delete Note

Permanently delete a note by ID.

Parameters:

  • note_id (required): UUID of the note

Example:

delete_note("01961d40-7a67-7049-a8a6-d5638cbaaeb9")

5. create_collection - Create Collection

Create a new collection to organize related notes.

Parameters:

  • title (required): Collection title

  • description (optional): Markdown-formatted description

Example:

create_collection( title="Project Apollo", description="""# Project Apollo All notes related to the Apollo project including: - Meeting notes - Technical specifications - Customer feedback """ )

6. delete_collection - Delete Collection

Delete a collection (notes remain, just unassociated).

Parameters:

  • collection_id (required): UUID of the collection

Example:

delete_collection("5e29c8a2-c73b-476b-9311-e2579712d4b1")

βš™οΈ Configuration

Configuration is done via environment variables. Copy .env.example to .env and customize:

# Required: Your Mem.ai API key MEM_API_KEY=your_api_key_here # Optional: Custom API endpoint (default: https://api.mem.ai/v2) MEM_API_BASE_URL=https://api.mem.ai/v2 # Optional: Request timeout in seconds (default: 30) MEM_REQUEST_TIMEOUT=30 # Optional: Enable debug logging (default: false) MEM_DEBUG=false

πŸ—οΈ Architecture

src/mcp_mem/ β”œβ”€β”€ __init__.py # Package initialization β”œβ”€β”€ models.py # Pydantic data models β”œβ”€β”€ client.py # Mem.ai API client └── server.py # MCP server implementation

Key Components

  • models.py: Pydantic models for request/response validation

  • client.py: Async HTTP client wrapper for Mem.ai API

  • server.py: FastMCP server with tool implementations

πŸ§ͺ Testing

Run the test suite:

# Install dev dependencies pip install -e ".[dev]" # Run all tests pytest # Run with coverage pytest --cov=mcp_mem --cov-report=html # Run specific test file pytest tests/test_client.py

πŸ” Error Handling

The server provides clear, actionable error messages:

  • MemAuthenticationError: Invalid or missing API key

  • MemNotFoundError: Resource (note/collection) not found

  • MemValidationError: Invalid request parameters

  • MemAPIError: General API errors

All errors are logged and returned with helpful context to the AI assistant.

πŸ“š Examples

See the examples/ directory for complete usage examples:

  • basic_usage.py: Simple examples of each tool

  • advanced_usage.py: Complex workflows and patterns

🀝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository

  2. Create your feature branch (git checkout -b feature/amazing-feature)

  3. Commit your changes (git commit -m 'Add amazing feature')

  4. Push to the branch (git push origin feature/amazing-feature)

  5. Open a Pull Request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ’‘ Use Cases

  • Meeting Notes: Automatically process and organize meeting transcripts

  • Research: Save and categorize research papers, articles, and findings

  • Customer Feedback: Collect and organize customer conversations

  • Knowledge Base: Build a searchable knowledge repository

  • Personal Memory: Keep track of ideas, thoughts, and learnings

πŸ› Troubleshooting

Authentication Error

MemAuthenticationError: MEM_API_KEY environment variable or api_key parameter is required

Solution: Set your MEM_API_KEY in the .env file or environment.

Connection Timeout

httpx.ReadTimeout: timeout

Solution: Increase MEM_REQUEST_TIMEOUT in your .env file.

Invalid UUID

MemValidationError: invalid UUID format

Solution: Ensure note/collection IDs are valid UUIDs from Mem.ai.


Built with ❀️ using FastMCP and Mem.ai

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BurtTheCoder/mcp-mem.ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server