Skip to main content
Glama

Satellite MCP Server

A comprehensive Model Context Protocol (MCP) server for satellite orbital mechanics calculations with natural language processing capabilities.

✨ Key Features

  • πŸ›°οΈ Satellite Access Window Calculations - Calculate when satellites are visible from ground locations

  • 🌍 World Cities Database - Built-in database of 200+ cities worldwide for easy location lookup

  • πŸ—£οΈ Natural Language Processing - Parse orbital parameters from text like "satellite at 700km in SSO over London"

  • πŸ“‘ TLE Generation - Generate Two-Line Elements from orbital descriptions

  • πŸŒ… Lighting Analysis - Ground and satellite lighting conditions (civil, nautical, astronomical twilight)

  • πŸ“Š Bulk Processing - Process multiple satellites and locations from CSV data

  • πŸš€ 6 Orbit Types - Support for LEO, MEO, GEO, SSO, Molniya, and Polar orbits

πŸš€ Quick Start

# Clone the repository git clone <repository-url> cd mcp-orbit # Build the Docker image make docker-build # Run the MCP server make docker-run

Local Installation

# Install dependencies make install # Run the MCP server make run

πŸ”Œ Connecting to the MCP Server

The server communicates via JSON-RPC 2.0 over stdio. Here are the connection methods:

Claude Desktop Integration

Add to your Claude Desktop MCP configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%/Claude/claude_desktop_config.json

{ "mcpServers": { "satellite-mcp-server": { "command": "docker", "args": ["run", "--rm", "-i", "satellite-mcp-server:latest"] } } }

Direct Docker Connection

# Interactive mode docker run -it --rm satellite-mcp-server:latest # Pipe commands echo '{"jsonrpc":"2.0","id":1,"method":"tools/list","params":{}}' | \ docker run --rm -i satellite-mcp-server:latest

Local Python Connection

# If running locally without Docker python -m src.mcp_server

πŸ’¬ Example Usage in LLMs

Example 1: Basic Satellite Pass Prediction

User Prompt:

"When will the ISS be visible from London tomorrow?"

MCP Tool Call:

{ "tool": "calculate_access_windows_by_city", "arguments": { "city_name": "London", "tle_line1": "1 25544U 98067A 24001.50000000 .00001234 00000-0 12345-4 0 9999", "tle_line2": "2 25544 51.6400 123.4567 0001234 12.3456 347.6543 15.49011999123456", "start_time": "2024-01-02T00:00:00Z", "end_time": "2024-01-03T00:00:00Z" } }

Response: The ISS will be visible from London 4 times tomorrow, with the best pass at 19:45 UTC reaching 78Β° elevation in the southwest sky during civil twilight.

Example 2: Natural Language Orbital Design

User Prompt:

"Create a sun-synchronous satellite at 700km altitude and show me when it passes over Tokyo."

MCP Tool Calls:

  1. Parse orbital elements:

{ "tool": "parse_orbital_elements", "arguments": { "orbital_text": "sun-synchronous satellite at 700km altitude" } }
  1. Calculate access windows:

{ "tool": "calculate_access_windows_from_orbital_elements_by_city", "arguments": { "orbital_text": "sun-synchronous satellite at 700km altitude", "city_name": "Tokyo", "start_time": "2024-01-01T00:00:00Z", "end_time": "2024-01-02T00:00:00Z" } }

Response: Generated SSO satellite (98.16Β° inclination, 98.6 min period) with 14 passes over Tokyo in 24 hours, including 6 daylight passes and 8 during various twilight conditions.

Example 3: Bulk Satellite Analysis

User Prompt:

"I have a CSV file with ground stations and want to analyze coverage for multiple satellites."

MCP Tool Call:

{ "tool": "calculate_bulk_access_windows", "arguments": { "locations_csv": "name,latitude,longitude,altitude\nMIT,42.3601,-71.0589,43\nCaltechm,34.1377,-118.1253,237", "satellites_csv": "name,tle_line1,tle_line2\nISS,1 25544U...,2 25544...\nHubble,1 20580U...,2 20580...", "start_time": "2024-01-01T00:00:00Z", "end_time": "2024-01-02T00:00:00Z" } }

πŸ› οΈ Available Tools

  1. calculate_access_windows - Basic satellite visibility calculations

  2. calculate_access_windows_by_city - City-based satellite passes

  3. calculate_bulk_access_windows - Multi-satellite/location analysis

  4. parse_orbital_elements - Natural language orbital parameter parsing

  5. calculate_access_windows_from_orbital_elements - Access windows from orbital text

  6. calculate_access_windows_from_orbital_elements_by_city - Combined orbital elements + city lookup

  7. search_cities - Find cities in the world database

  8. validate_tle - Validate Two-Line Element data

  9. get_orbit_types - Available orbit type definitions

πŸ—‚οΈ Project Structure

/ β”œβ”€β”€ src/ β”‚ β”œβ”€β”€ mcp_server.py # MCP server implementation β”‚ β”œβ”€β”€ satellite_calc.py # Core orbital mechanics calculations β”‚ └── world_cities.py # World cities database β”œβ”€β”€ docs/ # Documentation β”œβ”€β”€ Dockerfile # Container definition β”œβ”€β”€ docker-compose.yml # Multi-container setup └── Makefile # Build automation

πŸ“š Dependencies

  • Skyfield - Satellite position calculations

  • NumPy - Numerical computations

  • MCP - Model Context Protocol implementation

  • Python 3.8+ - Runtime environment

🀝 Contributing

This is a specialized MCP server for satellite orbital mechanics. For issues or enhancements, please check the documentation in the docs/ directory.

πŸ“„ License

[Add your license information here]

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BuildASpacePro/Orbit-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server