plan.md•4.43 kB
# MCP-FinTechCo Server - Implementation Plan
## Project Overview
This project implements a Model Context Protocol (MCP) server using FastMCP 2.0. MCP is a standardized protocol for connecting large language models to external tools and data sources. The server is deployed on Google Cloud Platform (GCP) and provides comprehensive financial technology capabilities including real-time market data, technical indicators, foreign exchange rates, and cryptocurrency pricing.
## Technical Specifications
- **Framework**: FastMCP 2.0
- **Language**: Python 3.11
- **Deployment**: GCP e2-small VM in us-central1 region
- **Version Control**: GitHub repository (MCP-FinTechCo)
- **Documentation**: https://gofastmcp.com
## Implementation Plan
### Phase 1: Project Foundation
1. **Project Structure Setup**
- [x] Create `requirements.txt` with FastMCP 2.0, httpx, and python-dotenv
- [x] Create `.gitignore` for Python projects
- [x] Create `.env.sample` with placeholder environment variables
- [x] Create `plan.md` (this document)
- [ ] Implement core `server.py` file
2. **Version Control Initialization**
- [ ] Initialize local git repository
- [ ] Create comprehensive README.md
- [ ] Create GitHub repository using `gh repo create`
- [ ] Push initial commit to GitHub
### Phase 2: Core Implementation
3. **MCP Server Development**
- [ ] Set up FastMCP 2.0 server in `server.py`
- [ ] Configure server for both local and production environments
- [ ] Implement proper error handling and logging
4. **Initial Tool: Weather Information**
- [ ] Implement `get_city_weather` tool
- [ ] Integrate with Open-Meteo API (no API key required)
- [ ] Add input validation and error handling
- [ ] Document tool parameters and return values
5. **Local Testing Infrastructure**
- [ ] Create `test_client.py` for MCP server testing
- [ ] Implement test cases for `get_city_weather`
- [ ] Add usage examples and documentation
- [ ] Validate server functionality end-to-end
### Phase 3: Deployment to GCP
6. **GCP Configuration**
- [ ] Create `DEPLOYMENT.md` with detailed deployment instructions
- [ ] Document gcloud CLI commands for:
- Creating e2-small VM instance in us-central1
- Configuring firewall rules
- Setting up SSH keys
- [ ] Create `startup-script.sh` for VM initialization
- [ ] Create systemd service file (`mcp-server.service`) for auto-start
7. **Deployment Automation**
- [ ] Create `deploy.sh` script for automated deployment
- [ ] Include steps for:
- Python 3.11 installation
- Virtual environment setup
- Dependency installation
- Environment variable configuration
- MCP server service start
### Phase 4: Expansion (Post-Launch)
8. **Additional Tools and Features**
- [ ] Identify and prioritize new tools based on initial feedback
- [ ] Implement additional MCP tools
- [ ] Update documentation and tests
- [ ] Deploy updates to production
## Expected Deliverables
1. **Code**
- Fully functional MCP server with `get_city_weather` tool
- Local test client with examples
- Deployment automation scripts
2. **Documentation**
- README.md (setup, usage, API reference)
- plan.md (this file)
- DEPLOYMENT.md (GCP deployment guide)
- Inline code documentation
3. **Configuration**
- Environment variable templates (.env.sample)
- GCP deployment configurations
- Systemd service files
4. **Repository**
- GitHub repository (MCP-FinTechCo)
- Version controlled with clear commit history
- Ready for collaboration and continuous deployment
## Success Criteria
- MCP server successfully responds to `get_city_weather` requests locally
- Server deploys to GCP without errors
- Comprehensive documentation enables easy setup and usage
- Test client validates all core functionality
- Repository structure supports future expansion
## Next Steps
After completing the initial implementation:
1. Conduct thorough local testing
2. Deploy to GCP staging environment
3. Perform production validation
4. Gather feedback for tool expansion
5. Plan and implement additional FinTech-focused tools
## Resources
- FastMCP Documentation: https://gofastmcp.com/getting-started/welcome
- FastMCP Quickstart: https://gofastmcp.com/getting-started/quickstart
- Open-Meteo API: https://open-meteo.com/
- GCP Documentation: https://cloud.google.com/docs