Skip to main content
Glama
server.py6.92 kB
import asyncio # Add asyncio import import os import sys import time import json import httpx from dotenv import load_dotenv from mcp.server.fastmcp import FastMCP load_dotenv() # Initialize FastMCP server server = FastMCP( "bocha-search-mcp", prompt=""" # Bocha Search MCP Server Bocha is a Chinese search engine for AI, This server provides tools for searching the web using Bocha Search API. It allows you to get enhanced search details from billions of web documents, including weather, news, wikis, healthcare, train tickets, images, and more. ## Available Tools ### 1. bocha_web_search Search with Bocha Web Search and get enhanced search details from billions of web documents, including page titles, urls, summaries, site names, site icons, publication dates, image links, and more. ### 2. bocha_ai_search Search with Bocha AI Search, recognizes the semantics of search terms and additionally returns structured modal cards with content from vertical domains. ## Output Format All search results will be formatted as text with clear sections for each result item, including: - Bocha Web search: Title, URL, Description, Published date and Site name - Bocha AI search: Title, URL, Description, Published date, Site name, and structured data card If the API key is missing or invalid, appropriate error messages will be returned. """ ) @server.tool() async def bocha_web_search( query: str, freshness: str = "noLimit", count: int = 10 ) -> str: """Search with Bocha Web Search and get enhanced search details from billions of web documents, including page titles, urls, summaries, site names, site icons, publication dates, image links, and more. Args: query: Search query (required) freshness: The time range for the search results. (Available options YYYY-MM-DD, YYYY-MM-DD..YYYY-MM-DD, noLimit, oneYear, oneMonth, oneWeek, oneDay. Default is noLimit) count: Number of results (1-50, default 10) """ # Get API key from environment boch_api_key = os.environ.get("BOCHA_API_KEY", "") if not boch_api_key: return ( "Error: Bocha API key is not configured. Please set the " "BOCHA_API_KEY environment variable." ) # Endpoint endpoint = "https://api.bochaai.com/v1/web-search?utm_source=bocha-mcp-local" try: payload = { "query": query, "summary": True, "freshness": freshness, "count": count } headers = { "Authorization": f"Bearer {boch_api_key}", "Content-Type": "application/json", } async with httpx.AsyncClient() as client: response = await client.post( endpoint, headers=headers, json=payload, timeout=10.0 ) response.raise_for_status() resp = response.json() if "data" not in resp: return "Search error." data = resp["data"] if "webPages" not in data: return "No results found." results = [] for result in data["webPages"]["value"]: results.append( f"Title: {result['name']}\n" f"URL: {result['url']}\n" f"Description: {result['summary']}\n" f"Published date: {result['datePublished']}\n" f"Site name: {result['siteName']}" ) return "\n\n".join(results) except httpx.HTTPStatusError as e: return f"Bocha Web Search API HTTP error occurred: {e.response.status_code} - {e.response.text}" except httpx.RequestError as e: return f"Error communicating with Bocha Web Search API: {str(e)}" except Exception as e: return f"Unexpected error: {str(e)}" @server.tool() async def bocha_ai_search( query: str, freshness: str = "noLimit", count: int = 10 ) -> str: """Search with Bocha AI Search, recognizes the semantics of search terms and additionally returns structured modal cards with content from vertical domains. Args: query: Search query (required) freshness: The time range for the search results. (Available options noLimit, oneYear, oneMonth, oneWeek, oneDay. Default is noLimit) count: Number of results (1-50, default 10) """ # Get API key from environment boch_api_key = os.environ.get("BOCHA_API_KEY", "") if not boch_api_key: return ( "Error: Bocha API key is not configured. Please set the " "BOCHA_API_KEY environment variable." ) # Endpoint endpoint = "https://api.bochaai.com/v1/ai-search?utm_source=bocha-mcp-local" try: payload = { "query": query, "freshness": freshness, "count": count, "answer": False, "stream": False } headers = { "Authorization": f"Bearer {boch_api_key}", "Content-Type": "application/json", } async with httpx.AsyncClient() as client: response = await client.post( endpoint, headers=headers, json=payload, timeout=10.0 ) response.raise_for_status() response = response.json() results = [] if "messages" in response: for message in response["messages"]: content = {} try: content = json.loads(message["content"]) except: content = {} # 网页 if message["content_type"] == "webpage": if "value" in content: for item in content["value"]: results.append( f"Title: {item['name']}\n" f"URL: {item['url']}\n" f"Description: {item['summary']}\n" f"Published date: {item['datePublished']}\n" f"Site name: {item['siteName']}" ) elif message["content_type"] != "image" and message["content"] != "{}": results.append(message["content"]) if not results: return "No results found." return "\n\n".join(results) except httpx.HTTPStatusError as e: return f"Bocha AI Search API HTTP error occurred: {e.response.status_code} - {e.response.text}" except httpx.RequestError as e: return f"Error communicating with Bocha AI Search API: {str(e)}" except Exception as e: return f"Unexpected error: {str(e)}"

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BochaAI/bocha-search-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server