Skip to main content
Glama

Physics MCP Server

by BlinkZer0
partition-function.mdx3.35 kB
# Statistical Mechanics: Partition Function Calculate thermodynamic properties from energy levels using statistical mechanics. ## Problem Calculate the partition function and derived thermodynamic quantities for a simple quantum harmonic oscillator. ## Energy Levels For a quantum harmonic oscillator: E_n = ℏω(n + 1/2) ### 1. Define energy levels ```json { "jsonrpc": "2.0", "id": "1", "method": "cas", "params": { "action": "evaluate", "expr": "hbar * omega * (n + 0.5)", "vars": { "hbar": {"value": 1.054571817e-34, "unit": "J*s"}, "omega": {"value": 1e14, "unit": "rad/s"}, "n": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] } } } ``` ### 2. Calculate partition function ```json { "jsonrpc": "2.0", "id": "2", "method": "statmech_partition", "params": { "energy_levels": [ 5.27e-21, 1.58e-20, 2.64e-20, 3.69e-20, 4.75e-20, 5.80e-20, 6.86e-20, 7.91e-20, 8.97e-20, 1.00e-19 ], "degeneracies": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "temperature": 300 } } ``` **Expected Output:** - Partition function Z - Average energy ⟨E⟩ - Heat capacity C_V - Entropy S - Free energy F ### 3. Temperature dependence Plot thermodynamic quantities vs temperature: ```json { "jsonrpc": "2.0", "id": "3", "method": "plot", "params": { "plot_type": "function_2d", "f": "average_energy_vs_T", "x_range": [10, 1000], "xlabel": "Temperature (K)", "ylabel": "Average Energy (J)", "title": "Quantum Harmonic Oscillator: ⟨E⟩ vs T" } } ``` ## Classical Limit Compare with classical equipartition result: ⟨E⟩ = k_B T ```json { "jsonrpc": "2.0", "id": "4", "method": "constants_get", "params": { "name": "k_B" } } ``` ```json { "jsonrpc": "2.0", "id": "5", "method": "cas", "params": { "action": "evaluate", "expr": "k_B * T", "vars": { "k_B": {"value": 1.380649e-23, "unit": "J/K"}, "T": {"value": 300, "unit": "K"} } } } ``` ## Heat Capacity Analysis ### Low Temperature (Quantum Regime) At low T: C_V ∝ exp(-ℏω/k_B T) ### High Temperature (Classical Regime) At high T: C_V → k_B (equipartition) ### Crossover Temperature T_crossover ≈ ℏω/k_B ```json { "jsonrpc": "2.0", "id": "6", "method": "cas", "params": { "action": "evaluate", "expr": "hbar * omega / k_B", "vars": { "hbar": {"value": 1.054571817e-34, "unit": "J*s"}, "omega": {"value": 1e14, "unit": "rad/s"}, "k_B": {"value": 1.380649e-23, "unit": "J/K"} } } } ``` ## Key Physics Concepts - **Quantum Statistics**: Discrete energy levels lead to quantum effects - **Temperature Dependence**: Smooth transition from quantum to classical behavior - **Equipartition Theorem**: Classical limit recovers k_B T per degree of freedom - **Zero-Point Energy**: Ground state energy ℏω/2 even at T=0 ## Expected Results 1. **Low T**: Exponential suppression of excited states 2. **High T**: Linear increase in average energy (classical limit) 3. **Crossover**: Smooth transition around T ≈ ℏω/k_B ≈ 764 K 4. **Heat Capacity**: Schottky anomaly shape ## Extensions Try these variations: - Different oscillator frequencies - Anharmonic potentials - Multi-dimensional oscillators - Comparison with experimental data - Debye model for solids - Einstein model comparison

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BlinkZer0/Phys-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server