Skip to main content
Glama

Physics MCP Server

by BlinkZer0
Configuration.md2.09 kB
--- title: Configuration kind: howto header_svg: src: "/assets/svg/cas-lab-hero.svg" static: "/assets/svg/cas-lab-hero-static.svg" title: "Configure Physics MCP" animate: true theme_variant: "auto" reduced_motion: "auto" --- # Configuration > Current server version: 2.0 <p align="center"> <img src="assets/header.svg" width="960" alt="Physics MCP banner" /> </p> [Home](../README.md) | [Architecture](Architecture.md) | [Configuration](Configuration.md) | Tool Docs: [All Tools](Tools/AllTools.md) | [CAS](Tools/CAS.md) | [Plot](Tools/Plot.md) | [NLI](Tools/NLI.md) Environment Variables (NLI, optional) - `LM_BASE_URL`: Base URL for a local OpenAI-compatible LM API (e.g., `http://localhost:1234/v1` for LM Studio) - `LM_API_KEY`: Optional API key if your local API requires it - `DEFAULT_MODEL`: Model name to use (e.g., `qwen2.5-coder`) Notes - These variables are optional. If omitted, NLI uses a deterministic, rule-based fallback and all tools still work. - A local LM (e.g., LM Studio) improves NLI speed and robustness, but it is not required for core calculations. MCP Client Config - See `config/mcp_config.json` for a ready-to-use entry. Example: ``` { "mcpServers": { "phys-mcp": { "command": "node", "args": ["packages/server/dist/index.js"], "env": { "LM_BASE_URL": "http://localhost:1234/v1", "LM_API_KEY": "", "DEFAULT_MODEL": "qwen2.5-coder" }, "disabled": false } } } ``` Python Worker Dependencies - Declared in `packages/python-worker/requirements.txt` - Install with: `pip install -r packages/python-worker/requirements.txt` Local Development - Build: `pnpm build` - Run: `pnpm dev` or ode packages/server/dist/index.js` - Test: `pnpm run test:install` Quick LM Studio setup (optional) 1. Install and run LM Studio. 2. Set `LM_BASE_URL` (e.g., `http://localhost:1234/v1`) and `DEFAULT_MODEL`. 3. If required, set `LM_API_KEY` for your local server. Joke in reduced units: the NLI won't violate causality—if you don’t set `LM_BASE_URL`, it simply takes the rule-based path.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BlinkZer0/Phys-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server