Skip to main content
Glama

Physics MCP Server

by BlinkZer0
README_phases_7_8.md7.82 kB
# Phys-MCP Phases 7 & 8: Distributed Collaboration & Experiment Orchestration ## 🚀 Implementation Complete This implementation adds two major consolidated tools to Phys-MCP, completing the vision of a unified digital physics laboratory with distributed computing and comprehensive experiment orchestration capabilities. ## 📦 New Tools ### Phase 7: `distributed_collaboration` **Graphics-at-scale distributed computing with comprehensive collaboration features** **Methods:** - `job_submit` - Submit jobs to Slurm or Kubernetes with artifact retrieval - `session_share` - Create multi-user shares with access control - `lab_notebook` - Signed, versioned notebook entries with provenance - `artifact_versioning` - Git/DVC-style artifact versioning with lineage **Key Features:** - **Compute Backends**: Slurm (sbatch) and Kubernetes (Jobs/CronJobs) - **Full Provenance**: Device, mesh, commit SHA, duration tracking - **Content Addressing**: SHA-256 hashes for immutable artifact identification - **Collaboration**: Expiring shares, participant management, digital signatures ### Phase 8: `experiment_orchestrator` **Unified Digital Physics Lab with DAG-based experiment orchestration** **Methods:** - `define_dag` - Create DAGs from natural language or JSON specifications - `validate_dag` - Comprehensive validation with cycle detection and graphics audit - `run_dag` - Execute with intelligent local/remote scheduling - `publish_report` - Generate paper-like PDFs with auto-captioned figures - `collaborate_share` - Share complete experiment bundles **Key Features:** - **DAG Support**: All existing Phys-MCP tools (cas, plot, data, quantum, ml_ai_augmentation, etc.) - **Intelligent Scheduling**: Auto-offload compute-intensive nodes to distributed resources - **Professional Reports**: LaTeX-quality PDFs with BibTeX integration - **Caching**: Parameter-aware caching with content addressing ## 🏗️ Architecture ### Consolidated Tool Pattern Following established Phys-MCP patterns: - Single tool entry points with method-based routing - Full backward compatibility with individual method names - Comprehensive TypeScript schemas with validation - Unified Python implementations with shared utilities ### Cross-Phase Contracts - **Acceleration**: CUDA/HIP/MPS/XPU detection with CPU fallback - **Graphics**: Universal emit_plots/emit_csv/emit_animation support - **Safety**: Configurable caps with allow_large override - **Caching**: Content-addressable storage with lineage tracking ## 📁 Package Structure ``` packages/ ├── tools-distributed/ # Phase 7 TypeScript package ├── tools-orchestrator/ # Phase 8 TypeScript package ├── python-worker/ │ ├── distributed_collaboration.py │ ├── experiment_orchestrator.py │ └── worker.py # Updated with new routing └── server/src/index.ts # Updated with tool integration ``` ## 🚀 Quick Start ### Distributed Job Submission ```json { "tool": "distributed_collaboration", "method": "job_submit", "backend": "slurm", "job_spec": { "resources": {"cpu": 4, "memory": "8GB", "gpu": 1}, "command": ["python", "physics_simulation.py"] }, "artifacts_path": "/scratch/results" } ``` ### DAG-Based Experiment ```json { "tool": "experiment_orchestrator", "method": "define_dag", "natural_language": "Analyze hydrogen 2p orbital: solve Schrödinger equation, plot wavefunction, create animation" } ``` ### Session Collaboration ```json { "tool": "distributed_collaboration", "method": "session_share", "session_id": "my_experiment", "access": "write", "participants": ["colleague@university.edu"] } ``` ## 📊 Example Workflows ### Multi-Physics Pipeline 1. **Import Data**: Molecular dynamics trajectory via `data` tool 2. **ML Analysis**: Pattern recognition via `ml_ai_augmentation` 3. **Quantum Calculation**: Electronic structure via `quantum` tool 4. **Visualization**: 3D rendering via `plot` tool 5. **VR Export**: Immersive visualization via `export_tool` 6. **Collaboration**: Share complete workflow with team ### Distributed Computing Workflow 1. **Define DAG**: Complex simulation workflow 2. **Validate**: Check dependencies and resource requirements 3. **Execute**: Auto-offload compute-intensive nodes to HPC 4. **Collect**: Retrieve artifacts with full provenance 5. **Report**: Generate publication-ready PDF 6. **Archive**: Version all artifacts with lineage tracking ## 🔧 Dependencies ### Phase 7 (Optional) - `kubernetes` - For Kubernetes job submission - `yaml` - For configuration parsing - System: Slurm commands (`sbatch`, `sacct`, `squeue`) - System: `rsync`/`scp` for artifact retrieval ### Phase 8 (Required) - `networkx` - For DAG validation and topological sorting - `matplotlib` - For DAG visualization - All existing Phys-MCP dependencies ## 🧪 Testing Run the comprehensive test suite: ```bash cd tests/ python test_phases_7_8.py ``` **Test Coverage:** - ✅ Distributed collaboration manager initialization - ✅ Session sharing and lab notebook functionality - ✅ Artifact versioning with content addressing - ✅ DAG definition from natural language and JSON - ✅ DAG validation with cycle detection - ✅ DAG execution with caching - ✅ Report generation and collaboration sharing - ✅ Integration between phases ## 📚 Documentation - **Examples**: `examples/phase7_distributed_collaboration.md` - **Examples**: `examples/phase8_experiment_orchestrator.md` - **Implementation**: `docs/phases_7_8_implementation.md` - **API Reference**: TypeScript schemas in `packages/tools-*/src/schema.ts` ## 🎯 Acceptance Criteria ### Phase 7 ✅ - Local→Slurm mock submission with artifact retrieval and indexing - Local→K8s Job execution with log streaming and cleanup - Notebook+Versioning with hash/lineage resolution and cache hits ### Phase 8 ✅ - Hydrogen 2p exemplar: define→validate→run with GPU fallback - Static + animated visual generation with professional quality - Cache hits on repeat execution for reproducibility - PDF report generation with correct figures and provenance ## 🌟 Key Benefits ### Unified Digital Physics Lab - **Single Interface**: All distributed computing through consolidated tools - **Professional Workflows**: Publication-ready reports with proper provenance - **Team Science**: Built-in collaboration and sharing capabilities - **Scalable**: From laptop to supercomputer with same interface ### Graphics-at-Scale - **Contact Sheets**: Efficient preview of bulk visualizations - **Device Awareness**: Optimal resource utilization across hardware - **Professional Output**: LaTeX-quality reports with auto-captions - **Artifact Registry**: Centralized storage with content addressing ### Research Reproducibility - **Full Provenance**: Every artifact traceable to exact parameters - **Content Addressing**: Immutable identification via cryptographic hashes - **Lineage Tracking**: Complete dependency graphs for workflows - **Parameter Caching**: Efficient re-execution with change detection ## 🚀 Future Extensions The consolidated architecture makes it easy to add: - Additional compute backends (AWS Batch, Google Cloud, Azure) - Enhanced collaboration features (real-time editing, comments) - Advanced DAG optimization (cost-aware scheduling, resource prediction) - Integration with external workflow engines (Apache Airflow, Prefect) ## 📄 License This implementation follows the same license as the main Phys-MCP project. --- **Phys-MCP Phases 7 & 8** establish the foundation for distributed, collaborative, and reproducible computational physics research at scale. The implementation honors all existing contracts while providing powerful new capabilities for modern scientific computing workflows.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BlinkZer0/Phys-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server