README_phases_7_8.md•7.82 kB
# Phys-MCP Phases 7 & 8: Distributed Collaboration & Experiment Orchestration
## 🚀 Implementation Complete
This implementation adds two major consolidated tools to Phys-MCP, completing the vision of a unified digital physics laboratory with distributed computing and comprehensive experiment orchestration capabilities.
## 📦 New Tools
### Phase 7: `distributed_collaboration`
**Graphics-at-scale distributed computing with comprehensive collaboration features**
**Methods:**
- `job_submit` - Submit jobs to Slurm or Kubernetes with artifact retrieval
- `session_share` - Create multi-user shares with access control
- `lab_notebook` - Signed, versioned notebook entries with provenance
- `artifact_versioning` - Git/DVC-style artifact versioning with lineage
**Key Features:**
- **Compute Backends**: Slurm (sbatch) and Kubernetes (Jobs/CronJobs)
- **Full Provenance**: Device, mesh, commit SHA, duration tracking
- **Content Addressing**: SHA-256 hashes for immutable artifact identification
- **Collaboration**: Expiring shares, participant management, digital signatures
### Phase 8: `experiment_orchestrator`
**Unified Digital Physics Lab with DAG-based experiment orchestration**
**Methods:**
- `define_dag` - Create DAGs from natural language or JSON specifications
- `validate_dag` - Comprehensive validation with cycle detection and graphics audit
- `run_dag` - Execute with intelligent local/remote scheduling
- `publish_report` - Generate paper-like PDFs with auto-captioned figures
- `collaborate_share` - Share complete experiment bundles
**Key Features:**
- **DAG Support**: All existing Phys-MCP tools (cas, plot, data, quantum, ml_ai_augmentation, etc.)
- **Intelligent Scheduling**: Auto-offload compute-intensive nodes to distributed resources
- **Professional Reports**: LaTeX-quality PDFs with BibTeX integration
- **Caching**: Parameter-aware caching with content addressing
## 🏗️ Architecture
### Consolidated Tool Pattern
Following established Phys-MCP patterns:
- Single tool entry points with method-based routing
- Full backward compatibility with individual method names
- Comprehensive TypeScript schemas with validation
- Unified Python implementations with shared utilities
### Cross-Phase Contracts
- **Acceleration**: CUDA/HIP/MPS/XPU detection with CPU fallback
- **Graphics**: Universal emit_plots/emit_csv/emit_animation support
- **Safety**: Configurable caps with allow_large override
- **Caching**: Content-addressable storage with lineage tracking
## 📁 Package Structure
```
packages/
├── tools-distributed/ # Phase 7 TypeScript package
├── tools-orchestrator/ # Phase 8 TypeScript package
├── python-worker/
│ ├── distributed_collaboration.py
│ ├── experiment_orchestrator.py
│ └── worker.py # Updated with new routing
└── server/src/index.ts # Updated with tool integration
```
## 🚀 Quick Start
### Distributed Job Submission
```json
{
"tool": "distributed_collaboration",
"method": "job_submit",
"backend": "slurm",
"job_spec": {
"resources": {"cpu": 4, "memory": "8GB", "gpu": 1},
"command": ["python", "physics_simulation.py"]
},
"artifacts_path": "/scratch/results"
}
```
### DAG-Based Experiment
```json
{
"tool": "experiment_orchestrator",
"method": "define_dag",
"natural_language": "Analyze hydrogen 2p orbital: solve Schrödinger equation, plot wavefunction, create animation"
}
```
### Session Collaboration
```json
{
"tool": "distributed_collaboration",
"method": "session_share",
"session_id": "my_experiment",
"access": "write",
"participants": ["colleague@university.edu"]
}
```
## 📊 Example Workflows
### Multi-Physics Pipeline
1. **Import Data**: Molecular dynamics trajectory via `data` tool
2. **ML Analysis**: Pattern recognition via `ml_ai_augmentation`
3. **Quantum Calculation**: Electronic structure via `quantum` tool
4. **Visualization**: 3D rendering via `plot` tool
5. **VR Export**: Immersive visualization via `export_tool`
6. **Collaboration**: Share complete workflow with team
### Distributed Computing Workflow
1. **Define DAG**: Complex simulation workflow
2. **Validate**: Check dependencies and resource requirements
3. **Execute**: Auto-offload compute-intensive nodes to HPC
4. **Collect**: Retrieve artifacts with full provenance
5. **Report**: Generate publication-ready PDF
6. **Archive**: Version all artifacts with lineage tracking
## 🔧 Dependencies
### Phase 7 (Optional)
- `kubernetes` - For Kubernetes job submission
- `yaml` - For configuration parsing
- System: Slurm commands (`sbatch`, `sacct`, `squeue`)
- System: `rsync`/`scp` for artifact retrieval
### Phase 8 (Required)
- `networkx` - For DAG validation and topological sorting
- `matplotlib` - For DAG visualization
- All existing Phys-MCP dependencies
## 🧪 Testing
Run the comprehensive test suite:
```bash
cd tests/
python test_phases_7_8.py
```
**Test Coverage:**
- ✅ Distributed collaboration manager initialization
- ✅ Session sharing and lab notebook functionality
- ✅ Artifact versioning with content addressing
- ✅ DAG definition from natural language and JSON
- ✅ DAG validation with cycle detection
- ✅ DAG execution with caching
- ✅ Report generation and collaboration sharing
- ✅ Integration between phases
## 📚 Documentation
- **Examples**: `examples/phase7_distributed_collaboration.md`
- **Examples**: `examples/phase8_experiment_orchestrator.md`
- **Implementation**: `docs/phases_7_8_implementation.md`
- **API Reference**: TypeScript schemas in `packages/tools-*/src/schema.ts`
## 🎯 Acceptance Criteria
### Phase 7 ✅
- Local→Slurm mock submission with artifact retrieval and indexing
- Local→K8s Job execution with log streaming and cleanup
- Notebook+Versioning with hash/lineage resolution and cache hits
### Phase 8 ✅
- Hydrogen 2p exemplar: define→validate→run with GPU fallback
- Static + animated visual generation with professional quality
- Cache hits on repeat execution for reproducibility
- PDF report generation with correct figures and provenance
## 🌟 Key Benefits
### Unified Digital Physics Lab
- **Single Interface**: All distributed computing through consolidated tools
- **Professional Workflows**: Publication-ready reports with proper provenance
- **Team Science**: Built-in collaboration and sharing capabilities
- **Scalable**: From laptop to supercomputer with same interface
### Graphics-at-Scale
- **Contact Sheets**: Efficient preview of bulk visualizations
- **Device Awareness**: Optimal resource utilization across hardware
- **Professional Output**: LaTeX-quality reports with auto-captions
- **Artifact Registry**: Centralized storage with content addressing
### Research Reproducibility
- **Full Provenance**: Every artifact traceable to exact parameters
- **Content Addressing**: Immutable identification via cryptographic hashes
- **Lineage Tracking**: Complete dependency graphs for workflows
- **Parameter Caching**: Efficient re-execution with change detection
## 🚀 Future Extensions
The consolidated architecture makes it easy to add:
- Additional compute backends (AWS Batch, Google Cloud, Azure)
- Enhanced collaboration features (real-time editing, comments)
- Advanced DAG optimization (cost-aware scheduling, resource prediction)
- Integration with external workflow engines (Apache Airflow, Prefect)
## 📄 License
This implementation follows the same license as the main Phys-MCP project.
---
**Phys-MCP Phases 7 & 8** establish the foundation for distributed, collaborative, and reproducible computational physics research at scale. The implementation honors all existing contracts while providing powerful new capabilities for modern scientific computing workflows.