PHASES_4_8_ROADMAP.md•14.7 kB
# Physics MCP Server - Phases 4-8 Roadmap (Graphics-Advantaged)
## Executive Summary
Building on Phases 1-3 (22 tools, GPU acceleration, comprehensive physics), this roadmap delivers **graphics-first**, **GPU-accelerated** physics computing with **interactive capabilities** and **collaborative workflows**.
## Current State ✅
- 22 tools: CAS, Plot, NLI, Units, Constants, Tensor, Quantum, StatMech
- GPU acceleration layer with torch/cupy fallback
- SQLite persistence and artifact storage
- Cross-platform TypeScript/Python architecture
## Implementation Contracts
### Acceleration Contract
```python
def tool_function(..., emit_plots=True, emit_csv=True):
try:
result = gpu_computation(...) # torch on device
device = "cuda|mps|xpu"
except (RuntimeError, MemoryError):
result = cpu_fallback(...) # numpy fallback
device = "cpu"
return {
"result": result,
"artifacts": {"png_b64": ..., "csv_path": ...},
"meta": {"device": device, "cached": bool, "duration_ms": int}
}
```
### Graphics Contract
- **Static**: PNG (base64) + SVG + CSV for all outputs
- **Dynamic**: MP4/GIF/WebM animations + frame PNGs
- **Interactive**: JSON specs for client parameter sweeps
- **3D**: glTF/PLY exports for VR/AR compatibility
### Safety Caps
- Timeouts: 10s default, 30s animations, 300s ML training
- Memory: 160x160 surfaces, 64x64 fields, 300 frame limit
- Cache: 24h plots, 1h animations, 10GB total
## Phase 4: Data I/O & External Integration (2-3 weeks)
### New Packages
- `tools-data-io`: HDF5, FITS, ROOT import/export
- `tools-signal`: GPU FFT, filtering, spectrograms
- `tools-external`: arXiv, CERN, NASA, NIST APIs
- `tools-export`: Overleaf, GitHub, Zenodo, Jupyter
### Key Features
```python
def data_fft(signal, emit_plots=True):
# GPU-accelerated FFT with diagnostic plots
freqs, spectrum = torch_fft_or_numpy_fallback(signal)
if emit_plots:
# 4-panel diagnostic: time domain, magnitude, phase, spectrogram
artifacts["png_b64"] = generate_fft_analysis_plot(signal, freqs, spectrum)
return {"freqs": freqs, "spectrum": spectrum, "artifacts": artifacts}
```
### Acceptance Criteria
- [ ] Import HDF5/FITS/ROOT with metadata extraction
- [ ] FFT + filter pipeline with GPU acceleration
- [ ] External API integration with rate limiting
- [ ] All artifacts cached with provenance tracking
## Phase 5: Advanced Visualization (3-4 weeks)
### Enhanced Tools
- `plot_volume_3d`: GPU ray casting, marching cubes
- `plot_animation`: MP4/GIF/WebM with frame limits
- `plot_interactive`: Parameter sweeps + UI specs
- `plot_vr_export`: glTF/PLY for VR/AR
### GPU Volume Rendering
```python
def plot_volume_3d(f_expr, bounds, resolution=128):
try:
# GPU: torch volume sampling + marching cubes
vertices, faces = gpu_isosurface_extraction(f_expr, bounds, resolution)
except MemoryError:
# CPU fallback with reduced resolution
vertices, faces = cpu_marching_cubes(f_expr, bounds, resolution//2)
return {
"glb_export": export_glb(vertices, faces), # VR ready
"volume_png": render_volume_view(vertices), # Preview
"wireframe_png": render_wireframe(vertices) # Analysis
}
```
### Interactive Parameter Spaces
```python
def plot_interactive(f_expr, param_specs, grid_size=10):
# Generate parameter grid with GPU batch evaluation
artifact_set = []
for params in param_grid:
result = evaluate_with_params_gpu(f_expr, params)
artifact_set.append({
"params": params,
"plot_png": render_plot(result),
"thumbnail": create_thumbnail(result)
})
return {
"artifact_set": artifact_set,
"ui_spec": {"type": "slider_grid", "parameters": param_specs}
}
```
### Acceptance Criteria
- [ ] Volume rendering with GPU acceleration + CPU fallback
- [ ] Animations export MP4/GIF/WebM under frame limits
- [ ] Interactive sweeps generate UI specs + cached artifacts
- [ ] VR exports work in Blender/Unity viewers
## Phase 6: ML/AI Augmentation (4-5 weeks)
### New Packages
- `tools-ml-symbolic`: GPU genetic programming for equation discovery
- `tools-ml-surrogate`: Physics-informed neural networks (PINNs)
- `tools-ml-pattern`: Computer vision for physics data
- `tools-explain`: LM-powered mathematical derivations
### GPU Symbolic Regression
```python
def ml_symbolic_regression(data_x, data_y, max_generations=100):
try:
# GPU: PyTorch genetic programming
device = torch.device("cuda" if available else "cpu")
population = initialize_population_gpu(1000, device)
for gen in range(max_generations):
fitness = evaluate_population_gpu(population, data_x, data_y)
population = evolve_population_gpu(population, fitness)
except MemoryError:
# CPU fallback with smaller population
population = genetic_programming_cpu(data_x, data_y, pop_size=250)
best_expr = decode_best_individual(population)
return {
"symbolic_expression": str(best_expr),
"latex_expression": sp.latex(best_expr),
"artifacts": {"fit_analysis_png": plot_fit_analysis(data_x, data_y, best_expr)}
}
```
### Physics-Informed Neural Networks
```python
def ml_physics_informed(pde_expr, boundary_conditions, epochs=1000):
try:
# GPU PINN training
device = torch.device("cuda" if available else "cpu")
net = PINN([2, 50, 50, 50, 1]).to(device)
for epoch in range(epochs):
physics_loss = compute_pde_residual_gpu(net, pde_expr)
boundary_loss = compute_boundary_loss_gpu(net, boundary_conditions)
total_loss = physics_loss + 10 * boundary_loss
total_loss.backward()
except MemoryError:
# CPU fallback with smaller network
net, loss_history = train_pinn_cpu(pde_expr, boundary_conditions,
hidden=[25, 25], epochs=epochs//2)
return {
"solution_grid": net.predict(test_points),
"artifacts": {"solution_png": plot_pinn_solution(net)}
}
```
### LM-Powered Explanations
```python
def explain_derivation(mathematical_statement):
# Query LM Studio for step-by-step derivation
prompt = f"Derive step-by-step: {mathematical_statement}"
response = query_lm_studio(prompt, max_tokens=2000)
# Extract LaTeX equations and generate visual steps
latex_equations = extract_latex_equations(response.text)
step_images = [render_latex_to_image(eq) for eq in latex_equations]
return {
"derivation_text": response.text,
"latex_equations": latex_equations,
"artifacts": {"derivation_pdf": create_derivation_document(response.text)}
}
```
### Acceptance Criteria
- [ ] Symbolic regression finds correct expressions on test data
- [ ] PINNs solve heat/wave/Poisson equations accurately
- [ ] Pattern recognition works on physics image datasets
- [ ] LM explanations generate coherent derivations
- [ ] All ML tools use GPU with graceful CPU fallback
## Phase 7: Distributed & Collaborative (4-5 weeks)
### New Packages
- `tools-distributed`: SLURM, K8s, AWS Batch job submission
- `tools-collaborative`: Multi-user sessions, real-time sync
- `tools-versioning`: Git-like artifact versioning
- `tools-notebook`: Signed lab notebooks with peer review
### Remote Execution
```python
def job_submit_slurm(computation_spec, resources):
# Generate SLURM script with GPU allocation
job_script = generate_slurm_script(computation_spec, resources)
# Submit and track job
job_id = submit_slurm_job(job_script)
# Register for artifact retrieval
register_remote_job(job_id, computation_spec)
return {"job_id": job_id, "status": "queued", "estimated_runtime": "2h"}
```
### Artifact Versioning
```python
def artifact_versioning(artifact_path, operation="commit"):
# Git-like versioning for artifacts
if operation == "commit":
hash_id = compute_artifact_hash(artifact_path)
store_artifact_version(artifact_path, hash_id)
return {"version": hash_id, "size": get_file_size(artifact_path)}
elif operation == "diff":
return compare_artifact_versions(artifact_path, version1, version2)
```
### Collaborative Sessions
```python
def session_share(session_id, collaborators, permissions="read"):
# Enable multi-user access to session
for user in collaborators:
grant_session_access(session_id, user, permissions)
notify_user_session_shared(user, session_id)
return {"shared_with": collaborators, "access_url": generate_session_url(session_id)}
```
### Acceptance Criteria
- [ ] SLURM jobs submit and return artifacts with provenance
- [ ] Multi-user sessions sync in real-time
- [ ] Artifact versioning tracks dependencies and lineage
- [ ] Lab notebooks support digital signatures and peer review
## Phase 8: Unified Digital Physics Lab (5-6 weeks)
### Orchestration Tools
- `experiment_define`: NL → workflow DAG with graphics outputs
- `experiment_run`: Execute DAG with GPU parallelization
- `experiment_publish`: Paper-like PDF with figures + BibTeX
- `experiment_collaborate`: Share workflows + artifacts
### Experiment Definition
```python
def experiment_define(natural_language_description):
# Parse NL into computational workflow DAG
workflow_dag = parse_experiment_description(natural_language_description)
# Each node declares visual outputs
for node in workflow_dag.nodes:
node.outputs = {
"static_plots": ["png", "svg"],
"animations": ["mp4"] if node.is_time_dependent else [],
"data_exports": ["csv", "hdf5"],
"interactive": ["ui_spec"] if node.has_parameters else []
}
return {"dag": workflow_dag, "estimated_runtime": estimate_dag_runtime(workflow_dag)}
```
### Experiment Execution
```python
def experiment_run(workflow_dag, resources="auto"):
# Parallelize GPU-friendly nodes
gpu_nodes = identify_gpu_parallelizable_nodes(workflow_dag)
# Execute with resource allocation
results = {}
for node in topological_sort(workflow_dag):
if node in gpu_nodes and gpu_available():
result = execute_node_gpu(node, resources)
else:
result = execute_node_cpu(node)
results[node.id] = result
# Store artifacts with lineage
store_node_artifacts(node.id, result.artifacts,
dependencies=get_node_dependencies(node))
return {"results": results, "total_artifacts": count_artifacts(results)}
```
### Publication Generation
```python
def experiment_publish(experiment_results, title, authors):
# Generate paper-like PDF with auto-generated figures
document = create_latex_document(title, authors)
# Add figures with auto-generated captions
for node_id, result in experiment_results.items():
if "png_b64" in result.artifacts:
caption = generate_figure_caption(node_id, result.meta)
document.add_figure(result.artifacts["png_b64"], caption)
# Add methods section from tool metadata
methods_section = generate_methods_from_metadata(experiment_results)
document.add_section("Methods", methods_section)
# Compile to PDF
pdf_path = compile_latex_to_pdf(document)
return {
"pdf_path": pdf_path,
"figure_count": count_figures(document),
"bibtex": generate_bibtex_from_tools(experiment_results)
}
```
### End-to-End Example
```python
# Define experiment in natural language
experiment = experiment_define("""
Compute the hydrogen 2p orbital wavefunction using quantum mechanics,
visualize it as a 3D volume rendering and 2D cross-sections,
compare with experimental data from NIST,
and generate publication-quality figures.
""")
# Execute with GPU acceleration where possible
results = experiment_run(experiment.dag, resources={"gpu": True, "memory": "16GB"})
# Publish as paper with auto-generated figures
paper = experiment_publish(results,
title="Hydrogen 2p Orbital Visualization and Analysis",
authors=["Physics MCP User"])
```
### Acceptance Criteria
- [ ] Natural language → executable workflow DAG
- [ ] GPU parallelization of compatible nodes
- [ ] Auto-generated papers with figures and captions
- [ ] End-to-end hydrogen orbital example works
- [ ] Collaboration features enable multi-user workflows
## Implementation Timeline
**Total Duration**: 18-22 weeks (4.5-5.5 months)
| Phase | Duration | Key Deliverables |
|-------|----------|------------------|
| Phase 4 | 2-3 weeks | Data I/O, FFT, External APIs |
| Phase 5 | 3-4 weeks | Volume rendering, Animations, VR export |
| Phase 6 | 4-5 weeks | ML/AI tools, Symbolic regression, PINNs |
| Phase 7 | 4-5 weeks | Distributed computing, Collaboration |
| Phase 8 | 5-6 weeks | Unified lab, Experiment orchestration |
## Success Metrics
### Technical Metrics
- **Tool Count**: 22 → 60+ tools across all domains
- **GPU Utilization**: >80% of compute-intensive operations accelerated
- **Cache Hit Rate**: >60% for repeated operations
- **Memory Efficiency**: No OOM crashes under safety caps
### User Experience Metrics
- **Graphics Quality**: Publication-ready figures from all tools
- **Interactivity**: Parameter sweeps with real-time preview
- **Collaboration**: Multi-user sessions with conflict resolution
- **Publication**: End-to-end paper generation in <1 hour
### Scientific Impact Metrics
- **Accuracy**: ML tools match or exceed literature benchmarks
- **Performance**: 10x speedup on GPU vs CPU for large problems
- **Reproducibility**: All experiments fully reproducible with versioning
- **Adoption**: Integration with major physics workflows
## Risk Mitigation
### Technical Risks
- **GPU Memory**: Automatic fallback + memory monitoring
- **Model Accuracy**: Validation against known solutions
- **Performance**: Profiling + optimization at each phase
### Integration Risks
- **API Changes**: Version pinning + compatibility layers
- **Platform Support**: Continuous testing on Windows/Linux/macOS
- **Scaling**: Load testing with realistic physics workloads
### User Adoption Risks
- **Learning Curve**: Comprehensive docs + interactive tutorials
- **Migration**: Backward compatibility + migration tools
- **Support**: Community forum + expert consultation
---
**Ready to proceed with Phase 4 implementation?** 🚀