# Multi-stage production Dockerfile for Agricultural AI MCP Server
FROM node:20-alpine AS build
# Set working directory
WORKDIR /app
# Copy package files
COPY package*.json ./
# Install all dependencies (including dev dependencies for build)
RUN npm ci
# Copy source code and config
COPY src ./src
COPY tsconfig.json ./
# Build TypeScript
RUN npm run build
# Production stage
FROM node:20-alpine AS production
# Create non-root user for security
RUN addgroup -g 1001 -S nodejs && \
adduser -S mcp -u 1001
WORKDIR /app
# Copy package files
COPY package*.json ./
# Install only production dependencies
RUN npm ci --production --ignore-scripts && \
npm cache clean --force
# Copy built application from build stage
COPY --from=build /app/dist ./dist
# Change ownership to non-root user
RUN chown -R mcp:nodejs /app
USER mcp
# Set production environment
ENV NODE_ENV=production
# Render dynamically assigns PORT
# Don't set a default PORT, let Render handle it
# Expose the port (Render will set this)
EXPOSE 10000
# Health check for Render
HEALTHCHECK --interval=30s --timeout=3s --start-period=5s --retries=3 \
CMD node -e "console.log('Agricultural AI MCP server healthy')" || exit 1
# Start the MCP server
CMD ["node", "dist/server.js"]
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/BishalJena/fs-gate'
If you have feedback or need assistance with the MCP directory API, please join our Discord server