README.mdโข3.04 kB
# Batch Operations Examples
This directory demonstrates efficient batch operations for the UnrealBlueprintMCP system, including bulk blueprint creation, mass property updates, and parallel processing patterns.
## ๐ Examples Overview
### ๐๏ธ Bulk Blueprint Creation
**File**: `bulk_blueprint_creator.py`
- Create multiple blueprints from templates
- Parallel processing for improved performance
- Progress tracking and error handling
- Support for different blueprint types
### ๐ Mass Property Updates
**File**: `mass_property_updater.py`
- Update properties across multiple blueprints
- Batch property modifications
- Rollback capabilities for failed operations
- Property validation and type checking
### ๐ฆ Asset Pipeline Automation
**File**: `asset_pipeline.py`
- Complete asset processing workflows
- Batch import and setup operations
- Automated asset organization
- Quality assurance checks
### ๐ฏ Performance Optimizer
**File**: `performance_optimizer.py`
- Batch performance optimization operations
- Memory usage analysis
- Asset optimization suggestions
- Performance benchmarking
## ๐ Quick Start
1. **Setup Environment**
```bash
cd examples/advanced/batch_operations
pip install -r requirements.txt
```
2. **Configure Settings**
```python
# Edit config if needed
from ..config import DEFAULT_BATCH_SIZE, MCP_SERVER_URL
```
3. **Run Basic Example**
```bash
python bulk_blueprint_creator.py --count 10 --type character
```
## ๐ Performance Considerations
- **Batch Size**: Optimal size is 5-10 operations per batch
- **Concurrent Connections**: Limit to 3-5 simultaneous connections
- **Memory Usage**: Monitor memory when processing large batches
- **Error Recovery**: Always implement rollback mechanisms
## ๐ง Configuration Options
```python
BATCH_SETTINGS = {
"max_batch_size": 10,
"max_concurrent": 5,
"retry_attempts": 3,
"retry_delay": 1.0,
"progress_callback": True,
"error_logging": True
}
```
## ๐ Usage Patterns
### Simple Batch Creation
```python
from bulk_blueprint_creator import BatchBlueprintCreator
creator = BatchBlueprintCreator()
results = await creator.create_batch([
{"name": "Enemy1", "type": "character"},
{"name": "Enemy2", "type": "character"},
{"name": "Weapon1", "type": "weapon"}
])
```
### Advanced Batch Processing
```python
from asset_pipeline import AssetPipeline
pipeline = AssetPipeline()
await pipeline.process_batch(
assets=asset_list,
operations=["import", "optimize", "validate"],
parallel=True,
on_progress=lambda x: print(f"Progress: {x}%")
)
```
## โ ๏ธ Important Notes
- Always test batch operations in development environment first
- Use progress callbacks for long-running operations
- Implement proper error handling and rollback mechanisms
- Monitor system resources during large batch operations
- Consider rate limiting for very large batches