openai.pyโข5.39 kB
"""OpenAI model provider implementation."""
import logging
from typing import TYPE_CHECKING, ClassVar, Optional
if TYPE_CHECKING:
from tools.models import ToolModelCategory
from .openai_compatible import OpenAICompatibleProvider
from .registries.openai import OpenAIModelRegistry
from .registry_provider_mixin import RegistryBackedProviderMixin
from .shared import ModelCapabilities, ProviderType
logger = logging.getLogger(__name__)
class OpenAIModelProvider(RegistryBackedProviderMixin, OpenAICompatibleProvider):
"""Implementation that talks to api.openai.com using rich model metadata.
In addition to the built-in catalogue, the provider can surface models
defined in ``conf/custom_models.json`` (for organisations running their own
OpenAI-compatible gateways) while still respecting restriction policies.
"""
REGISTRY_CLASS = OpenAIModelRegistry
MODEL_CAPABILITIES: ClassVar[dict[str, ModelCapabilities]] = {}
def __init__(self, api_key: str, **kwargs):
"""Initialize OpenAI provider with API key."""
self._ensure_registry()
# Set default OpenAI base URL, allow override for regions/custom endpoints
kwargs.setdefault("base_url", "https://api.openai.com/v1")
super().__init__(api_key, **kwargs)
self._invalidate_capability_cache()
# ------------------------------------------------------------------
# Capability surface
# ------------------------------------------------------------------
def _lookup_capabilities(
self,
canonical_name: str,
requested_name: Optional[str] = None,
) -> Optional[ModelCapabilities]:
"""Look up OpenAI capabilities from built-ins or the custom registry."""
self._ensure_registry()
builtin = super()._lookup_capabilities(canonical_name, requested_name)
if builtin is not None:
return builtin
try:
from .registries.openrouter import OpenRouterModelRegistry
registry = OpenRouterModelRegistry()
config = registry.get_model_config(canonical_name)
if config and config.provider == ProviderType.OPENAI:
return config
except Exception as exc: # pragma: no cover - registry failures are non-critical
logger.debug(f"Could not resolve custom OpenAI model '{canonical_name}': {exc}")
return None
def _finalise_capabilities(
self,
capabilities: ModelCapabilities,
canonical_name: str,
requested_name: str,
) -> ModelCapabilities:
"""Ensure registry-sourced models report the correct provider type."""
if capabilities.provider != ProviderType.OPENAI:
capabilities.provider = ProviderType.OPENAI
return capabilities
def _raise_unsupported_model(self, model_name: str) -> None:
raise ValueError(f"Unsupported OpenAI model: {model_name}")
# ------------------------------------------------------------------
# Provider identity
# ------------------------------------------------------------------
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
return ProviderType.OPENAI
# ------------------------------------------------------------------
# Provider preferences
# ------------------------------------------------------------------
def get_preferred_model(self, category: "ToolModelCategory", allowed_models: list[str]) -> Optional[str]:
"""Get OpenAI's preferred model for a given category from allowed models.
Args:
category: The tool category requiring a model
allowed_models: Pre-filtered list of models allowed by restrictions
Returns:
Preferred model name or None
"""
from tools.models import ToolModelCategory
if not allowed_models:
return None
# Helper to find first available from preference list
def find_first(preferences: list[str]) -> Optional[str]:
"""Return first available model from preference list."""
for model in preferences:
if model in allowed_models:
return model
return None
if category == ToolModelCategory.EXTENDED_REASONING:
# Prefer models with extended thinking support
# GPT-5-Codex first for coding tasks
preferred = find_first(["gpt-5-codex", "gpt-5-pro", "o3", "o3-pro", "gpt-5"])
return preferred if preferred else allowed_models[0]
elif category == ToolModelCategory.FAST_RESPONSE:
# Prefer fast, cost-efficient models
# GPT-5 models for speed, GPT-5-Codex after (premium pricing but cached)
preferred = find_first(["gpt-5", "gpt-5-mini", "gpt-5-codex", "o4-mini", "o3-mini"])
return preferred if preferred else allowed_models[0]
else: # BALANCED or default
# Prefer balanced performance/cost models
# Include GPT-5-Codex for coding workflows
preferred = find_first(["gpt-5", "gpt-5-codex", "gpt-5-pro", "gpt-5-mini", "o4-mini", "o3-mini"])
return preferred if preferred else allowed_models[0]
# Load registry data at import time so dependent providers (Azure) can reuse it
OpenAIModelProvider._ensure_registry()