Skip to main content
Glama

img-gen

An MCP (Model Context Protocol) server that provides image generation and weather services for Claude Desktop and other MCP-compatible clients.

Features

šŸŽØ Image Generation

  • Generate images using Google's Gemini 2.5 Flash Image model

  • Automatic image compression and resizing to optimize token usage

  • Base64 encoding for seamless integration with MCP clients

  • Comprehensive logging and error handling

šŸŒ¤ļø Weather Services

  • Get weather alerts for US states

  • Fetch detailed weather forecasts by latitude/longitude

  • Uses the National Weather Service (NWS) API

Prerequisites

  • Python 3.11 or higher

  • uv package manager

  • Google Gemini API key (for image generation)

  • Claude Desktop (optional, for MCP integration)

Installation

  1. Clone this repository:

git clone <repository-url> cd img_gen
  1. Install dependencies using uv:

uv sync

Configuration

Google Gemini API Key

For image generation, you need to set up your Google Gemini API key. Update the API_KEY variable in image_generation.py:

API_KEY = "your-api-key-here"

Alternatively, you can modify the code to read from an environment variable for better security.

Claude Desktop Integration

To use this MCP server with Claude Desktop, add the following configuration to your Claude Desktop config file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: %APPDATA%\Claude\claude_desktop_config.json

Linux: ~/.config/Claude/claude_desktop_config.json

Image Generation Server Configuration:

{ "mcpServers": { "image_generation": { "command": "/path/to/uv", "args": [ "--directory", "/path/to/img_gen", "run", "image_generation.py" ] } } }

Weather Server Configuration:

{ "mcpServers": { "weather": { "command": "/path/to/uv", "args": [ "--directory", "/path/to/img_gen", "run", "weather.py" ] } } }

Note: Replace /path/to/uv with your actual uv installation path (e.g., /Users/username/.local/bin/uv) and /path/to/img_gen with the absolute path to this project directory.

Usage

Running the MCP Servers

Image Generation Server:

uv run image_generation.py

Weather Server:

uv run weather.py

Image Generation

The generate_image tool accepts a text prompt and returns a generated image:

  • Tool: generate_image

  • Parameters:

    • prompt (string): A text description of the image you want to generate

  • Returns: MCP Content objects containing the generated image in base64 format

Weather Services

Get Weather Alerts

  • Tool: get_alerts

  • Parameters:

    • state (string): Two-letter US state code (e.g., "CA", "NY")

  • Returns: Active weather alerts for the specified state

Get Weather Forecast

  • Tool: get_forecast

  • Parameters:

    • latitude (float): Latitude of the location (up to 4 decimal places recommended)

    • longitude (float): Longitude of the location (up to 4 decimal places recommended)

  • Returns: Detailed weather forecast for the next 5 periods

Project Structure

img_gen/ ā”œā”€ā”€ image_generation.py # MCP server for image generation using Gemini API ā”œā”€ā”€ weather.py # MCP server for weather alerts and forecasts ā”œā”€ā”€ main.py # Basic entry point ā”œā”€ā”€ pyproject.toml # Project dependencies and configuration ā”œā”€ā”€ uv.lock # Locked dependency versions └── README.md # This file

Image Processing

The image generation server includes automatic image optimization:

  • Max Dimension: 1024 pixels (maintains aspect ratio)

  • JPEG Quality: 85

  • Target File Size: ~500 KB

  • Format: Converts all images to JPEG for consistency

Images are automatically resized and compressed to reduce token usage while maintaining reasonable quality.

Dependencies

Key dependencies include:

  • mcp[cli] - Model Context Protocol framework

  • google-genai - Google Gemini API client

  • pillow - Image processing

  • httpx - HTTP client for weather API

See pyproject.toml for the complete list of dependencies.

Logging

Both servers include comprehensive logging:

  • Logs are written to stderr

  • Log levels: INFO, DEBUG, WARNING, ERROR

  • Includes timestamps and module names

Error Handling

  • Image generation failures return error messages via MCP

  • Weather API failures gracefully handle network issues

  • Invalid inputs are validated and return appropriate error messages

License

[Add your license here]

Contributing

[Add contribution guidelines if applicable]

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Badribn0612/mcp_servers'

If you have feedback or need assistance with the MCP directory API, please join our Discord server