Skip to main content
Glama

parse_paper_content

Extract structured content from arXiv papers by parsing HTML or PDF formats to retrieve text, metadata, and research information for analysis.

Instructions

解析论文内容(优先使用 HTML 版本,回退到 PDF)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
inputYesarXiv 论文URL或 arXiv ID
paperInfoNo论文信息(可选,用于添加论文元数据)

Implementation Reference

  • The core handler function that implements the parse_paper_content tool logic: extracts text content from arXiv paper preferring HTML version, falling back to PDF parsing, and formats output with optional paper metadata.
    async function parsePaperContent(input: string, paperInfo?: any): Promise<{content: string, source: 'html' | 'pdf'}> { let tempPdfPath: string | null = null; try { // 获取 arXiv ID let arxivId: string; if (input.startsWith('http://') || input.startsWith('https://')) { const urlParts = input.split('/'); arxivId = urlParts[urlParts.length - 1]; } else { arxivId = input; } // 首先尝试获取 HTML 版本 console.log("尝试获取 HTML 版本..."); const htmlContent = await getArxivHtmlContent(arxivId); let paperText: string; let source: 'html' | 'pdf'; if (htmlContent) { // 使用 HTML 版本 console.log("使用 HTML 版本解析内容"); paperText = extractTextFromHtml(htmlContent); source = 'html'; } else { // 回退到 PDF 版本 console.log("HTML 版本不可用,回退到 PDF 版本"); const pdfUrl = getArxivPdfUrl(input); tempPdfPath = await downloadTempPdf(pdfUrl); paperText = await extractPdfText(tempPdfPath); source = 'pdf'; } // 构建输出内容 let outputContent = ''; if (paperInfo) { outputContent += `=== 论文信息 ===\n`; outputContent += `标题: ${paperInfo.title}\n`; outputContent += `arXiv ID: ${arxivId}\n`; outputContent += `发布日期: ${paperInfo.published}\n`; outputContent += `内容来源: ${source.toUpperCase()}\n`; if (paperInfo.authors && paperInfo.authors.length > 0) { outputContent += `作者: ${paperInfo.authors.map((author: any) => author.name || author).join(', ')}\n`; } outputContent += `摘要: ${paperInfo.summary}\n`; outputContent += `\n=== 论文内容 ===\n\n`; } else { outputContent += `=== 论文内容 (来源: ${source.toUpperCase()}) ===\n\n`; } outputContent += paperText; return { content: outputContent, source }; } catch (error) { console.error("解析论文内容时出错:", error); throw new Error(`论文内容解析失败: ${error instanceof Error ? error.message : String(error)}`); } finally { // 清理临时 PDF 文件 if (tempPdfPath && fs.existsSync(tempPdfPath)) { try { fs.unlinkSync(tempPdfPath); console.log(`临时文件已删除: ${tempPdfPath}`); } catch (cleanupError) { console.warn(`清理临时文件失败: ${cleanupError}`); } } } }
  • Input schema defining parameters for the parse_paper_content tool: required 'input' (arXiv URL or ID), optional 'paperInfo' object with title, summary, published, authors.
    inputSchema: { type: "object", properties: { input: { type: "string", description: "arXiv 论文URL或 arXiv ID" }, paperInfo: { type: "object", description: "论文信息(可选,用于添加论文元数据)", properties: { title: { type: "string" }, summary: { type: "string" }, published: { type: "string" }, authors: { type: "array" } } } }, required: ["input"] }
  • src/index.ts:366-389 (registration)
    Registration of the parse_paper_content tool in the ListToolsRequestSchema handler, specifying name, description, and input schema.
    { name: "parse_paper_content", description: "解析论文内容(优先使用 HTML 版本,回退到 PDF)", inputSchema: { type: "object", properties: { input: { type: "string", description: "arXiv 论文URL或 arXiv ID" }, paperInfo: { type: "object", description: "论文信息(可选,用于添加论文元数据)", properties: { title: { type: "string" }, summary: { type: "string" }, published: { type: "string" }, authors: { type: "array" } } } }, required: ["input"] } }
  • src/index.ts:437-447 (registration)
    Tool dispatch/execution in the CallToolRequestSchema handler switch statement, invoking the parsePaperContent function and returning formatted text content.
    case "parse_paper_content": { const { input, paperInfo } = args as { input: string; paperInfo?: any }; const result = await parsePaperContent(input, paperInfo); return { content: [{ type: "text", text: result.content }] }; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BACH-AI-Tools/bach-Arxiv-Paper-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server